662 research outputs found

    A model of protocell based on the introduction of a semi-permeable membrane in a stochastic model of catalytic reaction networks

    Get PDF
    In this work we introduce some preliminary analyses on the role of a semi-permeable membrane in the dynamics of a stochastic model of catalytic reaction sets (CRSs) of molecules. The results of the simulations performed on ensembles of randomly generated reaction schemes highlight remarkable differences between this very simple protocell description model and the classical case of the continuous stirred-tank reactor (CSTR). In particular, in the CSTR case, distinct simulations with the same reaction scheme reach the same dynamical equilibrium, whereas, in the protocell case, simulations with identical reaction schemes can reach very different dynamical states, despite starting from the same initial conditions.Comment: In Proceedings Wivace 2013, arXiv:1309.712

    Simulation of a Power Regulation System for Steam Power Plants

    Get PDF
    Abstract Renewable energy sources, presently constituting about 23% of the total Italian power production, are featured by very discontinuous supply during the day that, to avoid grid malfunctions, must be compensated by fossil fuelled power plants. The latter must hence be able to rapidly control power supply. This paper proposes a power regulation system for coal power plants, consisting in the bypass of the low pressure pre-heaters in order to increase the steam flow-rate in turbine. The main advantage of this system is the limited thermo-mechanical stress induced in the pre-heaters. The solution effectiveness is investigated through a Matlab-Simulink model

    A stochastic model of catalytic reaction networks in protocells

    Full text link
    Protocells are supposed to have played a key role in the self-organizing processes leading to the emergence of life. Existing models either (i) describe protocell architecture and dynamics, given the existence of sets of collectively self-replicating molecules for granted, or (ii) describe the emergence of the aforementioned sets from an ensemble of random molecules in a simple experimental setting (e.g. a closed system or a steady-state flow reactor) that does not properly describe a protocell. In this paper we present a model that goes beyond these limitations by describing the dynamics of sets of replicating molecules within a lipid vesicle. We adopt the simplest possible protocell architecture, by considering a semi-permeable membrane that selects the molecular types that are allowed to enter or exit the protocell and by assuming that the reactions take place in the aqueous phase in the internal compartment. As a first approximation, we ignore the protocell growth and division dynamics. The behavior of catalytic reaction networks is then simulated by means of a stochastic model that accounts for the creation and the extinction of species and reactions. While this is not yet an exhaustive protocell model, it already provides clues regarding some processes that are relevant for understanding the conditions that can enable a population of protocells to undergo evolution and selection.Comment: 20 pages, 5 figure

    The Weibull functional form for SEP event spectra

    Get PDF
    The evolution of the kinetic energy spectra of two Solar Energetic Particle (SEP) events has been investigated through the Shannon's differential entropy during the different phases of the selected events, as proposed by [1]. Data from LET and HET instruments onboard the STEREO spacecraft were used to cover a wide energy range from ~ 4 MeV to 100 MeV, as well as EPAM and ERNE data, on board the ACE and SOHO spacecraft, respectively, in the range 1.6 ? 112 MeV. The spectral features were found to be consistent with the Weibull like shape, both during the main phase of the SEP events and over their whole duration. Comparison of results obtained for energetic particles accelerated at corotating interaction regions (CIRs) and transient-related interplanetary shocks are presented in the framework of shock acceleration
    corecore