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Abstract

Formal models, core calculi, and type systems, are important tools
for rigorously stating the more subtle details of a language, as well as
characterizing and studying its features and the correctness properties
of its programs. In this paper we present FAAL (Featherweight
Agent and Artifact Language), a formal calculus modelling the
agent and artifact program abstractions provided by the simpA agent
framework. The formalisation is largely inspired by Featherweight
Java. It is based on reduction rules applied in certain evaluation
contexts, properly adapted to the concurrency nature of simpA. On
top of this calculus we introduce a standard type system and prove
its soundness, so as to guarantee that the execution of a well-typed
program does not get stuck. Namely, all primitive mechanisms of agents
(activity execution), artifacts (field/property access and step execution),
and their interaction (observation and invocation) are guaranteed to
be used in a way that is structurally compliant with the corresponding
definitions: hence, there will not be run-time errors due to FAAL
distinctive primitives.
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2 Università del Piemonte Orientale, Dipartimento di Informatica, Via Teresa Michel
11, 15121 Alessandria, Italy. Email: giannini@di.unipmn.it
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1 Introduction

Concurrency is gaining momentum in the development of software sys-
tems, given the widespread diffusion of multi-core architectures and the
Internet. As nicely put forward by Sutter and Larus in [58]: “the free
lunch is over”, which means that the capability of writing well-engineered
concurrent programs – efficiently and effectively exploiting the available
hardware parallel features – is nowadays a requirement of any mainstream
language for programming-in-the-large, such as current OO programming
languages. As such, it becomes more and more important to enhance pro-
gramming languages with proper high-level abstractions that can “help build
concurrent programs, just as object-oriented abstractions help build large
component-based programs” [58].

From that perspective, a large amount of proposals have been developed
in the literature since the 80’s, many extending existing sequential program-
ming paradigms with concurrency features, such as the case of object-oriented
concurrent programming approaches [10, 63, 3]. Among the others, two main
prominent families of approaches are actors [2] and agents [37]. The actor
computing model is the reference model of several concurrent programming
languages and frameworks [39, 40], including Erlang [4], Scala [26], and Ac-
torFoundry [42]. An actor-based program is defined by a set of autonomous
active entities that communicate solely by asynchronous message passing.
On the other hand, agents and multi-agent systems – having their roots in
the context of Distributed Artificial Intelligence [61, 54] – are nowadays a
main paradigm for engineering complex software systems exhibiting features
of concurrency, distribution/decentralisation, autonomy, and flexibility [37].
They gave rise to a number of agent oriented programming languages and
frameworks—surveyed in [8, 7]. Similarly to actors, agents are active entities
communicating by asynchronous message passing. Differently from actors,
in agent systems an explicit notion of environment is considered that defines
agent situatedness: agents are reactive systems that continuously perceive
their environment and autonomously decide which actions to perform, ac-
cording to their designed objective [60]. Then, the environment can be
exploited also as a first-class abstraction to realise indirect/mediated forms
of communication besides message passing [59].

Independently of the abstractions we use, a main problem with the
engineering of concurrent programs lays in the difficulty of assessing their
correctness. Formal models based on core calculi and associated type system
are a widely accepted and standard approach for rigorously stating the
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more subtle details of a programming language, characterizing and studying
its features and the correctness properties of its programs. A prominent
example for this approach is rooted in the Featherweight Java calculus
(FJ) [34], which has being used as the basis for studying the properties of a
number of extensions of OO languages including sophisticated type systems
[35]. Besides the formalisation of sequential programming languages, core
calculi can be valuable tools also for rigorously studying concurrency models,
concurrent programming languages, or programming languages providing
some support for concurrent programming.

Therefore, along with the design of new abstractions, a main research
issue in concurrency programming is the definition of proper formal mod-
els, calculi, and type systems, analogously to the sequential case. The
main examples in this direction are CAP [12], a process calculus based on
the actor model, Honda and Tokoro’s object calculus with asynchronous
communication [31], and the join calculus [24].

The same situation does not hold for agent programming languages,
which are the focus of this paper. There are many papers on the formal
semantics of high-level agent programming languages (e.g., [29, 22, 46, 57,
21]), and in particular on their operational semantics; none of them, however,
deals with aspects such as typing and type safety. The main reason is
that most of them are logic-based, and have been introduced for solving
problems in the Distributed Artificial Intelligence context; hence, existing
formalisations focussed on aspects related to the underlying logic-based model
of the languages, in order to rigorously define the reasoning capabilities of
agents. A prominent example is [43], where the situation calculus is used to
formally specify the behaviour of cognitive agents. On the other hand, some
agent-oriented programming frameworks have been proposed as general-
purpose approaches to develop concurrent and distributed systems, as an
extension of OOP. Main examples are Jade [5] and simpA [53]. These
approaches would clearly benefit from a proper formalisation including a
type system capturing the essential features of the agent-oriented abstractions
on which they are based.

Accordingly, in this paper we introduce a calculus with type system
called FAAL (Featherweight Agent and Artifact Language), cap-
turing the relevant and distinctive features of simpA and the A&A (Agents
and Artifacts) conceptual model [47], introduced in the context of Agent
Oriented Software Engineering. A FAAL program is given by a set of
autonomous agents that work concurrently inside a shared environment mod-
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ularised in terms of non-autonomous entities called artifacts. A distinctive
aspect of this language is that it is largely inspired by FJ (it is based on
reduction rules applied in certain evaluation contexts), but it also includes a
number of techniques used in the context of concurrent models like process
algebras—e.g., the use of parallel composition of components, and synchro-
nisation of agent-artifact behaviour. A (well-formed) system configuration
is seen as a parallel composition of agents and artifacts instances (seen as
independent and asynchronous processes), the former keeping track of a tree
of activities to be executed in autonomy, the latter holding a set of pending
operations to be executed in response to agent actions over the artifact.

On top of this calculus we define a type system that ensures the correct
evolution of a system, through the standard properties of progress, and
preservation of well-formed configurations. In particular, the type soundness
result we prove guarantees that all primitive mechanisms of agents (activity
execution), artifacts (field/property access and step execution), and their
interaction (observation and invocation) are used in a way that is structurally
compliant with the corresponding definitions. As in most strongly type
languages, this helps the programmer in writing provenly correct programs
in a modular way – a rather necessary mean for building complex applications
– and paves the way for a more extensive behavioural analysis.

Organisation of the paper Section 2 introduces the basic concepts
underlying FAAL – and simpA – programming model. Section 3 presents
the (typed) syntax, and the operational semantics of the FAAL language. In
Section 4 we state the theorems related to type soundness. Section 5 revises
the related papers and Section 6 outlines possible directions for further work.
The appendix contains the proofs of the theorems of Section 4.

2 FAAL Agent-Oriented Abstractions and Type
System: An Informal Overview

This section provides a brief informal description of the basic abstractions
on which the FAAL calculus is based. The interested reader can find a more
detailed account of the programming model in the context of the simpA
framework [53].

A program in FAAL is represented by a (dynamic) set of autonomous
entities called agents. Agents work concurrently inside a shared environment
represented by a (dynamic) set of non-autonomous entities called artifacts.
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Agents and artifacts are the basic high-level and coarse-grained abstractions
available in the A&A conceptual model, recently introduced in the context
of agent-oriented programming and software engineering as a novel foun-
dational approach for modelling and engineering complex software systems
[47]. Agents are used to model task-oriented components of a system, and
are autonomous in the sense that they encapsulate the logic and control of
task execution. Artifacts model instead function-oriented components of
a system, used by agents for accomplishing their individual and collective
tasks.

In the remainder of this section we will introduce the essential elements
of (i) agents, (ii) artifacts and (iii) their interaction in FAAL by using a
simple example, given by four kinds of agents (Main, Init, User, Observer)
and an artifact (Counter). The Main and Init agents set up the system,
while two User agents and an Observer agents work cooperatively by using
the shared artifact, respectively by incrementing it (Users) and reacting to
its changes (Observer).

Agent Abstraction An agent in FAAL is a stateful entity whose job is
to pro-actively execute a structured set of activities as specified by the agent
programmer. Such activities (which may possible be non-terminating) finally
result in executing sequences of atomically-executed actions : internal actions
that inspect/change agent state, or external actions by which interaction
with the agent environment is achieved. Examples of agents with a single
main activity are given by the Main and Init agent:

agent Main {

activity main() {

spawn Init(make Counter(0));

}

}

agent Init {

activity main(Counter c) {

spawn Observer(c);

spawn User(c);

spawn User(c);

}

}

Built-in actions make and spawn are used create artifacts and to spawn
agents. The state of an agent is represented by an associative store, called
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memo-space, which represents the long-term memory where the agent can
dynamically attach and associatively read/retrieve chunks of information
called memos. A memo is a tuple, characterised by a label and an ordered
set of arguments. Besides keeping track of state information, memos are
useful to coordinate the execution of structured activities, as will be shown
in the following.

A basic set of internal actions is available to agents that work with the
memo-space: +memo is used to create a new memo with a specific label and
a variable number of arguments, ?memo and -memo to get/remove a memo
with the specified label. Labels of memos have a type, which constrains the
type of values used in arguments.

The computational behaviour of an agent can be defined as a hierarchy
of activities (corresponding to the execution of some tasks). An example is
given by the Observer agent:

agent Observer {

activity main(Counter c) :agenda (

prepare(c) :pre tr

:pers fls,

monitoring(c) :pre completed(prepare)

:pers (not memo(finished))

) { }

activity prepare(Counter c) { ... }

activity monitoring(Counter c) { ... }

}

Activities can be simple or structured, and are represented by activity

blocks, providing the name of the activity, parameters, and behaviour speci-
fication. The behaviour of a simple activity (prepare and monitoring in
the above example) is composed of a flat sequence of actions (inside curly
brackets), which specifies a single control flow.

For structured activities (like main in the above example), an agenda is
specified, containing a set of sub-activities, called todos. These sub-activities,
which run concurrently, have to be completed before the activity may start
the execution of its sequence of actions (inside curly brackets). This leads to
a hierarchical structure of running activities.

A todo contains the name of the sub-activity to be executed, a pre-
condition over the inner state of the agent that must hold for the specified
sub-activity to start (clause :pre), and a persistence attribute related to the
sub-activity execution (clause :pers).
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Preconditions are expressed as a boolean expression over a basic set of
predefined predicates. Predicates make it possible to specify conditions on
the current state of the activity agenda, in particular on (i) the state of the
sub-activitities (if they started, completed, or aborted) and on (ii) the local
inner state of the agent, that is the memo space. For instance, the predicate
memo(M) is true if the specified memo M is found in the memo space. In the
Observer example, in the structured activity main, the activity monitoring

is executed when the activity prepare completed — completed(A) is a
built-in predicate which is true is the specified activity A has completed.

When the precondition of a todo item holds (for an activity in execution
listing such a todo in the agenda), the todo is removed from the agenda and
an instance of the sub-activity is created and executed. So, multiple sub-
activities can be executed concurrently and asynchronously, in the context of
the same parent activity. Sub-activities execution can be then synchronised
by properly specifying preconditions in todos, hence in a declarative way. If
a todo is declared persistent, when the sub-activity is completed the todo is
re-inserted into the agenda. The persistence attribute can also specify the
condition under which the activity should persist. For instance, the todo
item about the monitoring activity is declared persistent until a finished

memo is found.

The type system of FAAL, in addition to the standard checks for
expressions, will also ensure that activities mentioned in todo lists and in
preconditions/persistence predicates, are those defined for the agent. This is
the key to guaranteeing that the only form of agent-to-agent interaction is
via artifacts, as dictated by the A&A conceptual model.

Artifact Abstraction An artifact is composed of three main parts: (i)
observable properties, which are attributes that can be observed by agents
without an explicit agent action towards the artifact; (ii) a description of
the inner non-observable state, composed of set of state variables analogous
to private instance fields of objects; and (iii) operations, which embody the
computational behaviour of artifacts. A minimal example of artifact is given
by the following Counter:

artifact Counter {

obsprop int count;

Counter(int c) { .count = c; }

operation inc() { .count = .count+1; }

}
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This artifact has one observable property (count), no inner state vari-
able, and one operation (inc) to increment the counter.

Both state variables and observable properties are declared similarly
to instance fields in objects; observable properties are prefixed by obsprop

keyword. In both cases, a dot notation (e.g. .count) is used both for
l-values and r-values, to syntactically distinguish them from parameters.
Operations can be defined by method-like blocks, prefixed by the keyword
operation, specifying the name and parameters of the operation and a
computational body. It is worth noting that no return parameter is specified,
since operations in artifacts are not exactly like methods in objects.

Operations can be either atomic, executed as a single computational
step, or structured, i.e. composed of multiple atomic operation steps. For
each operation a guard can be specified (:guard declaration), representing
the condition that must hold for scheduling the execution of the operation
code. Structured operations and guards are essential in easily implementing
coordination artifacts, i.e. artifacts that are designed to mediate agent
interaction and provide some coordination functionality. A simple example
is given by a synchronisation barrier artifact:

artifact Barrier {

int v;

Barrier(int n){ .v = n; }

operation synch() { .v = .v-1; step allSynched() }

step allSynched() :guard (.v == 0) {}

}

This artifact is useful for synchronizing a set of n agents, each executing
the synch operation as a synchronisation point. The hidden state variable v

keeps track of the number of agents that executed synch so far. The synch

operation is composed of two steps: in the first (implicit) one, the internal
variable is decremented; the second one is executed only when v reached zero,
meaning that all agents reached the synchronisation point. Other examples
of components that can be suitably modelled as coordination artifacts are
bounded buffers, blackboards, communication channels [53].

To be useful, an artifact should typically provide some level of ob-
servability. This is achieved both by generating observable events through
the signal primitive, and by defining observable behaviours. The events
generated through the signal primitive can be sensed by the agent using
the artifact — i.e. by the agent which started the operation. An observable
event is represented by a labelled tuple, whose label represents the kind of
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the event and the information content. The end of an operation is an observ-
able behaviour generating the event op exec completed, whereas when a
property changes, an event of type prop updated is generated (with the new
value of the property as a content). For instance, in the Counter artifact inc
operation generates a prop updated(count, Value) event each time the
observable property count is updated. These events may be sensed by all
the agents that are focussing (observing) the artifact (more details below).

Type checking an artifact is very similar to typechecking for classes, as
fields and properties are typed. Our type system is nominal (like that of
Java), so the type of an artifact is the name used in its definition.

Agent-Artifact Interaction Model We explain the details of agent-
artifact interactions based on the full program of the example reported in
Figure 1.

As already stated, artifact use and observation are the basic form of in-
teraction between agents and artifacts. The use of an artifact by an agent
involves two basic aspects: (i) executing operations on the artifact, and
(ii) perceiving through agent sensors the observable events generated by
the artifact. In the abstract language presented here, sensors used by an
agent are declared at the beginning of the agent block (see sensor s in agent
Observer)—note that each agent instance gets its private instance of the
sensors.

In order to trigger operation execution, the use action is provided
(exemplified in activity usingCount of agent User), specifying the target
artifact (c), the operation to execute (inc) and optionally the identifier of
the sensor (s) used to collect observable events generated by the artifact. The
type system checks that agents invoke only operations that are defined for
the artifact type, and that sensors are defined for the agent. It is important
to note that no implicit control coupling exists between an agent and an
artifact while an operation is executed.

The sensor that one may provide with the use primitive is associated
with the activation of the operation, so that a synchronisation may be created
between the agent and the artifact. During the execution of the operation
the artifact may perform a signal, which adds to the associated agent
sensor a perception (represented by a pair of a label and a value) that may
be sensed by the agent via a sense primitive. The execution of a sense is
blocked until there is a perception available, in which case it is returned. The
code of operation inc2 in the Counter artifact shows an example of signal,
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artifact Counter {

obsprop int count;

Counter(int c) { .count = c; }

operation inc() {

.count = .count+1;

}

operation inc2() { // variant showing signalling

.count = .count+1;

signal(val(.count));

}

}

agent Main {

activity main() { spawn Init(make Counter(0)); }

}

agent Init {

activity main(Counter c) { spawn Observer(c); spawn User(c); spawn User(c); }

}

agent Observer {

Sns s;

activity main(Counter c) :agenda (

prepare(c) :pre tr

:pers fls,

monitoring(c) :pre completed(prepare)

:pers (not memo(finished))

) { }

activity prepare(Counter c) { focus(c,s); }

activity monitoring(Counter c) {

sense s :filter prop_updated;

int value = observe c.count;

... // do something

if (value >= 100 ){ +memo(finished); }

}

}

agent User {

Sns s;

activity main(Counter c) :agenda ( usingCount(c) :pre tr :pers tr ) { }

activity usingCount(Counter c) {

use c.inc() :sns .s;

}

activity usingCount2(Counter c) { // variant showing sensing

use c.inc2() :sns .s;

... // code that does not need the updated counter

sense .s :filter val;

... // code that may assume that the counter has been updated

}

}

Figure 1: The complete program including an Observer agent continuously
observing a Counter Artifact, which is concurrently used by two User agents.
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occurring each time the counter is updated and using val as label and the
counter status .count as value. On the other side, if the agent wants to
know whether the counter has been updated it should specify a sensor along
with the use primitive, and use a sense when it needs the value, as shown
in usingCount2 activity of User agent. Note that a filter val is specified at
sensing time, to select only the events labelled val—simpA provides general
filters based on regular-expression patterns, matched over the event type
(a string), while in FAAL we model a simple matching on label names. In
general, sensing signals is the mechanism by which agents can get output
results that could be possibly generated by the operation execution.

Besides sensing events generated when explicitly using an artifact, a
support for continuous observation is provided. If an agent is interested in
observing every event generated by an artifact – including those generated as
a result of the interaction with other agents – two actions can be used, focus
and unfocus. The former is used to start observing the artifact, specifying
a sensor to be used to collect the events and optionally the filter to define
the set of events to observe. The latter is used to stop observing the artifact.
In the example, the Observer agent executes a focus on the artifact in the
prepare activity.

In our formalisation we shall model this kind of observation by restricting
the observation to the completion of operations of an artifact, and the
updating of its properties. To this end, we used the Observable/Observed
pattern: agents insert sensors in the run-time artifacts to be observed. These
sensors are used by the artifact to signal an observable event, and are sensed
by the observing agent. Our type system ensures that sensors can only be
defined in agents, and may not be passed as parameters to operations, so
that artifacts cannot be aware of which sensor they are signalling to. This
makes it possible to enforce a discipline of programming which is faithful
to the A&A conceptual model, where artifacts as observable entities are
not required to keep track of who is observing or using them: this is part of
the interaction model and the artifact programmer can (and should) design
artifact structure and behaviour abstracting from such a detail.

A main objective of FAAL is to have a formal framework to study
errors of different kinds that can occur when executing simpA agent-oriented
programs, having defined a sound notion of type of agent-oriented abstrac-
tions. Almost all existing agent programming languages are untyped or
weakly typed; therefore, many simple but important types of errors are
discovered only by executing a program [51], at runtime. The same holds
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also for the simpA framework, which is based on pure Java types. Then,
it is not possible – for instance – to detect at compile time if an agent is
specifying a wrong operation when using an artifact, or if an agent tries to
sense an event which is never generated by the focused artifact. In FAAL
these simple errors can be clearly detected statically by having defined a
suitable type system for agent and artifact abstractions.

3 FAAL Syntax, Typing and Operational Seman-
tics

3.1 Syntax

The syntax of FAAL (Featherweight Agent and Artifact Language)
is presented in Figure 2.

In presenting the calculus we use a set of conventions for names: G

ranges over agent names, A ranges over artifact names, and C denotes the
types of basic values (including Bool and Unit). For program identifiers: s
denotes sensor names, l labels, f field names, and p property names. Finally
we will use a for activity names, and o for operations and steps.

The overbar sequence notation is used according to [34]. For instance:
“f” denotes the possibly empty sequence “f1, ..., fn”, the pair “U x” stands
for “U1 x1, ..., Un xn”, and “U f;” stands for “U1 f1; ...; Un fn;”. The empty
sequence is denoted by “∅”.

There are very minor differences between the syntax of the calculus and
that of the language used for the examples, namely, tuples are not first-class
but are seen as specific kinds of basic values, and specifiers (:agenda, :pers,
:pre, :guard and :sns) are mandatory instead of optional.

The expression fail models failures in activities, such as the evaluation
of ?memo(l) and -memo(l) in an agent in which the memo-space does not have
a memo with label l. Note that the types of parameters in artifact operations
and the type of fields and properties may not be sensors. Moreover, the
signal expression, signal(l(e)), does not specify a sensor. Therefore, sensors
may not be explicitly manipulated by artifacts.

As already hinted in the overview, operations can be either executed as a
single computational step, or be composed of multiple atomic operation steps.
Operation steps are implemented by operation-like blocks qualified with step,
and can be triggered (enabled) by means of the next primitive specifying
the name of the step to be enabled next and possibly its parameters.
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U ::= G | A | C Agent / artifact / basic value types
T ::= U | Sns Types

GD ::= agent G { Sns s̄; Act } Agent (class) definition
Act ::= activity a (T x) :agenda (SubAct) {e; } Activity definition

SubAct ::= a(e) :pers e :pre e sub-activity definition

AD ::= artifact A {U f; U p; Op Step } Artifact (class) definition
Op ::= operation o (U x) :guard e {e; } Operation definition

Step ::= step o (U x) :guard e {e; } Step definition

e ::= x | c Expressions: variable / basic value
| spawn G(e) | make A(e) agent and artifact instance creation
| e; e sequential composition

| .f | .f = e artifact-field access / update
| .p | .p = e artifact-property access / update
| next o(e) | signal(l(e)) next step / event generation

| .s sensor
| use e.o(e) :sns e operation use
| sense e :filter l event sensing
| focus(e, e) | unfocus(e, e) focus / unfocus
| observe e.p get property value
| ?memo(l) | -memo(l) | +memo(l(e)) memo operations
| memo(l) memo predicate
| started(a) | completed(a) | failed(a) activity state predicates
| fail activity error

Figure 2: Syntax

3.2 Typing

The FAAL calculus is equipped with a small-step operational semantics (cf.
Section 3.3). This section presents the type system of FAAL. The main
property enforced by the type system is the fact that the execution of a
well-typed program does not get stuck: that is, if a running agent has some
ongoing activity or an artifact has some operation to perform, then there
is some rule that can be applied, hence execution will not lead to run-time
errors (cf. Section 4). That is the standard type soundness property of
statically typed languages.

An agent table GT and an artifact table AT map agent and artifact
names to agent and class definitions. Following FJ [34], in presenting the
type system and the operational semantics we assume fixed, global tables
GT and AT. A program is a pair (GT, AT). We assume that these tables are
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artifact C {

obsprop int c;

operation inc() :guard tr { .c = .c+1; }

}

agent U {

Sns s;

activity main(Counter c) :agenda ( usC(c) :pre tr :pers tr ) { }

activity usC(Counter c) :agenda() { use c.inc() :sns .s; }

}

Figure 3: Simplified versions of the artifact Counter and the agent User (cf.
Figure 1)

well-formed, i.e., they contain precisely one entry for each agent/artifact
mentioned in the program.

While presenting the type system, we will use the simplified versions of
the artifact Counter and the agent User given in Figure 3 (cf. Figure 1) to
illustrate some of the typing rules.

The typing rules for expressions, activity and agent declarations, opera-
tion/step and artifact declarations are given in Figure 4, 5 and 6, respectively.
A type environment, Γ, is a finite mapping from variables to types, written
[x : T].

The typing judgements are as follows.

• Γ ` e : T in X meaning that, under the assumptions in Γ, the expres-
sion e has type T in the context of the artifact or agent X. The top of
Figure 4 contains the rules for expressions that may occur in any con-
text (artifact or agent). In rule [Tval], the function typeOf returns the
type of a basic value (mapping tr and fls to Bool, and unit to Unit).
The most interesting rules are: [TnewA], which ensures that when
an artifact is created all its fields and properties are initialised with
values of the appropriate type; and [TnewG], which ensures that when
an agent is created the parameters of the activity main are initialised
with values of the appropriate type.

The middle of Figure 4 contains the rules for expressions that may
occur inside artifacts only. The most interesting rules are: [Tnext],
which ensures that when an operation step in invoked all the required
parameters are supplied with the right type; and [Tsend], which ensures
that when a perception is added to a sensor the type of the expression
e is that of the values that may be associated with the label l, which is
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Expressions that may occur in agent activities or artifact operations/steps:

Γ ` x : Γ(x) in X [Tvar] Γ ` c : typeOf(c) in X [Tval]

Γ ` e1 : T1 in X

Γ ` e2 : T2 in X

Γ ` e1; e2 : T2 in X

U f ∈ A Γ ` e : U in X

U
′
p ∈ A Γ ` e′ : U

′
in X [TnewA]

Γ ` make A(e, e′) : A in X

activity main (T x) · · · ∈ G

Γ ` e : T in X [TnewG]
Γ ` spawn G(e) : G in X

Expressions that may occur in artifact operations/steps only:

U f ∈ A fi ∈ f
[TfieldR]

Γ ` .fi : Ui in A

U f ∈ A fi ∈ f Γ ` e : Ui in A
[TfieldW]

Γ ` .fi = e : Ui in A

U p ∈ A pi ∈ p
[TprR]

Γ ` .pi : Ui in A

U p ∈ A pi ∈ p Γ ` e : Ui in A
[TprW]

Γ ` .pi = e : Ti in A

Γ ` e : U in A

step o(U x) · · · ∈ A [Tnext]
Γ ` next o(e) : A in A

Γ ` e : U in A typeOfLab(l) = U
[Tsend]

Γ ` signal(l(e)) : U in A

Expressions that may occur in agent activities only:

activity a · · · ∈ G
[TstateAct]

Γ ` started(a) : Bool in G

Γ ` completed(a) : Bool in G

Γ ` failed(a) : Bool in G

Γ ` fail : T in G [Tfail]

Sns s̄ ∈ G s ∈ s̄
[Tsns]

Γ ` .s : Sns in G

Γ ` e : Sns in G typeOfLab(l) = U
[Tperc]

Γ ` sense e :filter l : U in G

Γ ` e′ : A in G

Γ ` e : Sns in G

operation o(U x) · · · ∈ A

Γ ` e : U in G
[Top]

Γ ` use e
′.o(e) :sns e : Sns in G

Γ ` e : T in G typeOfLab(l) = T
[Tmm]

Γ ` ?memo(l) : T in G

Γ ` -memo(l) : T in G

Γ ` +memo(l(e)) : T in G

Γ ` memo(l) : Bool in G

Γ ` e
′ : Sns in G Γ ` e : A in G

[Tfocus]
Γ ` focus(e, e′) : Sns in G

Γ ` e
′ : Sns in G Γ ` e : A in G

[Tunfocus]
Γ ` unfocus(e, e′) : Sns in G

U p ∈ A Γ ` e : A in G
[TpropA]

Γ ` observe e.pi : Ui in G

Figure 4: Typing rules for expressions
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[x : T] ` e : T in G started(a), failed(a), completed(a) are not in e

(for all i ∈ 1..n)
SubActi = ai(e

i) :pers e′i :pre e′′i ei, e′i, e
′′
i side effect free

activity ai (T
i
xi) · · · ∈ G

[x : T] ` ei : T
i
in G [x : T] ` e′i : Bool in G [x : T] ` e′′i : Bool in G

` activity a (T x) :agenda (SubAct1 · · · SubActn){e; } ok in G

[x : U] ` e′ : T′ in A

[x : U] ` e : Bool in A e side effect free

` operation o(U x) :guard e {e′; } ok in A

` step o(U x) :guard e {e′; } ok in A

Figure 5: Typing rules for activities and operations/steps agents

` Act ok in G

activity main (T x) : agenda(SubAct){e; } ∈ Act

` agent G { Sns s̄; Act} ok

` Op ok in A

` Step ok in A

` artifact A{U f; V p; Op Step} ok

Figure 6: Typing rules for agents and artifacts

specified by the function typeOfLab. Consider, for instance, operation
inc of artifact C (Figure 3). Since the operation has no parameters, its
body (.c = .c+1) can be typed under the empty set of assumptions.
Assume that there are integer constants of type int, and the obvious
typing rule for the sum of two integer expressions, say [Tsum]. The
typing is as follows:

int c ∈ C

` 1 : int in C [Tval]

int c ∈ C
[TprR]

` .c : int in C
[Tsum]

` .c + 1 : int in C
[TprW]

` .c = .c + 1 : int in C

The bottom of Figure 4 contains the rules for expressions that may
occur inside agents only. The most interesting rules are: [Tfail], which
states that fail may have any type; [Tperc], which states that if an
agent senses a perception via one of its sensor then the type of the
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obtained value is the one specified by the label l used as filter; and
[Top], which ensures that when an agent uses an artifact the supplied
sensor belongs to the agent, the invokes operations is supported by the
artifact and all the parameters required by the operations are supplied
with the right type. Consider, for instance, activity usC of agent U

(Figure 3). Its body (use c.inc() :sns .s) can be typed under the
type environment Γ = {c:C}, as follows:

Γ ` c : U in U [Tvar]

Sns .s ∈ U
[Tsns]

Γ ` .s : Sns in U

operation inc() · · · ∈ U
[Top]

Γ ` use c.inc() :sns .s : Sns in U

For an activity to be well typed, as shown in Figure 5, the expression (i.e.
the body), must be well typed, and should not contain the predicates
started(a), failed(a), and completed(a) that are meant to be just
in the preconditions and persistence predicates. These predicates
are used to coordinate the execution of sub-activities. Persistence
and precondition predicates should be without side effects, that
is, expressions which are (a boolean combination of) either a basic
value c, or a parameter activity x, or one of the predicates memo(l),
completed(a), failed(a), and started(a). The parameters of the
activity, x, may be used in the body of the activity and also in its
sub-activities, providing a common state for the sub-activities. For
instance, the formal parameter c of activity usC of agent U (Figure 3)
is used in the body of the activity. The activity usC is well typed
according to the rule at the top of Figure 5 (the typing of the body of
activity usC has been showed before). The same rule can be used to
establish that the activity main is well typed (since the body of the
activity is empty, the first premise can be ignored).

Type checking of operations, Figure 5, checks that the body of the
operation is well typed, and that its guard is of type boolean, and
is side effect free. For an operation this means that the expression
is (a boolean combination of) either a basic value c, or a parameter
activity x, or a field access .f, or a property access .p. For instance,
the operation inc of artifact C (Figure 3) is well typed according to
the rule at the bottom of Figure 5 (the typing of the body of operation
inc is shown before).

• ` . . . ok meaning that the agent/artifact “. . .” is well typed. The
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associated typing rules are in Figure 6, and just say that all the defined
activities/operations/steps are well defined. Note that agents must
contain the activity main. For instance, the rules can be used to
establish that both the artifact C and the agent U (Figure 3) are well
typed.

Definition 1 (Well-typed programs) We write ` (GT, AT) ok, to be read
“the program (GT, AT) is well-typed”, to mean that the agents in GT and the
artifacts in AT are well-typed.

In the following we always assume that programs are well-typed.

3.3 Operational Semantics

The operational semantics is described by means of a set of reduction rules
that transform sets of instances of agents/artifacts/sensors, each of which
has a unique identity, provided by a reference. The metavariable γ ranges
over references to instance of agents, α over artifacts, σ over sensors.

The order in which the run-time expressions are evaluated inside
agent/artifact instances is specified by using the standard technique of
evaluation contexts [62].

3.3.1 Run-Time Expressions and Values

The run-time expressions, the expressions used during evaluation, do not
contain variables, as variables are dynamically replaced by references, as
we will see when defining the operational semantics. However, run-time
expressions may contain references to agents, artifacts, or sensors. Therefore
run-time expressions are defined by replacing, in the productions of the
grammar for expression in Figure 2, x with ι.

The run-time values, ranged over by v and w, are defined as follows

v ::= ι | c

That is, a value is either a reference to an agent/artifact/sensor instance or
a basic value.

In the rest of the paper we use “expression” to refer to run-time expres-
sions, whereas we use “user-level expression” to mean that the expression is
generated by the grammar in Figure 2.
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3.3.2 Configurations

Configurations are non-empty sets of sensor, agent, or artifact instances.

Sensor instances are represented by

σ = 〈l v〉Sns

where σ is the instance identifier, and l v is the queue of label/value asso-
ciations representing the events generated (and not yet perceived) on the
sensor.

Agent instances are represented by

γ = 〈l v, σ, R〉G

where γ is the agent identifier, G is the type of the agent, l v is the content
of the memo-space, σ is the sequence of references to the instances of the
sensors that the agent uses perceive, and R is the state of the activity main

that was started when the agent was created. All the activities that the
agent will be involved in are subactivities (possibly not direct) of the activity
main, as we can see from the example in Section 2. The sensor instances in
σ are in one-to-one correspondence with the sensor variables declared in the
agent (see the rule at the bottom of Figure 5), and are needed since every
agent uses its own set of sensor instances.

An instance of an activity, R, describes a running activity. As explained in
Section 2, before evaluating the body of an activity we have to complete the
execution of its sub-activities, so we also represent the state of execution of
the sub-activities.

R ::= a(v)[Sr1 · · · Srn]{e} | faileda

The name of the activity is a, v are the actual parameters of the current
activity instance, Sr1 · · · Srn is the set of sub-activities running, and e is the
state of evaluation of the body of the activity. (Note that the evaluation of
the body starts only when all the sub-activities have been fully evaluated.)
With faileda we say that activity a failed. If the evaluation of a sub-activity
is successful then it is removed from the set Sr1 · · · Srn. So when n = 0 the
evaluation of the body e starts.

The state of a running sub-activity is represented by:

Sr ::= a(e)〈e1, e2〉 | R
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During the evaluation of the precondition and the persistence predicate a
sub-activity is represented by the term, a(v)〈e1, e2〉 where e1 (resp., e2)
represents the state of evaluation of the persistence (resp., precondition)
predicate. The persistence predicate is evaluated first and if it evaluates to
tr, then the evaluation of e2 is started.

In the operational semantics, we will see that when an activity starts
for the first time, the persistence predicate of all its sub-activities is set to tr

(rule [SCH]), so that sub-activities are executed at least once (in accordance
with the truth of their precondition). A subsequent scheduling will depend
on the truth of the persistence predicate. In case, the evaluation of the
persistence predicate e1 is fls the sub-activity is removed from the set of
running sub-activities.

The precondition e2 is evaluated only in case the persistence predicate
e1 = tr. If e2 evaluates to tr, the term a(v)〈tr, tr〉 is replaced with the
initial state of the evaluation of the activity a with parameters v, which
is represented by R. Instead, if e2 evaluates to fls the evaluation of the
precondition of a is rescheduled.
Artifact instances are represented by

α = 〈f = v, p = w, σ, O1 · · · On〉A

where α is the artifact identifier, A the type of the artifact, the sequence
of pairs f v associates a value to each field of A, the sequence of pairs p w

associates a value to each property of A, the sequence σ represents the sensors
that agents focusing on A are using, and Oi, 1 ≤ i ≤ n, are the operations
that are in execution. We consider O1 · · · On a queue with first element On and
last O1. Artifacts are single threaded and (differently from agents that may
have more than one activity running at the same time) only the operation
On is in execution at any time.
A running operation, O, is defined as follows.

O ::= (σ, o(v)[St1 · · · Stp]〈e1〉{e2}) | (σ, o[St1 · · · Stq]) p ≥ 0, q ≥ 1

The first kind of running operation is an operation that is evaluating its guard
or its body, whereas the second kind specifies an operation that is evaluating
the guards of its steps (after having evaluated its body). For a running
operation O, σ identifies the sensor associated with the operation which was
specified by the agent containing the use that started the operation, and
that is used to send events generated during the execution of the operation
by signal, [St1 · · · Stp] is the set of steps generated by the evaluation of the
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body e2 of the operation. Moreover, v are the actual parameters on which
the operation was started.
For the running operation (σ, o(v)[St1 · · · Stp]〈e1〉{e2}), if e1 is different
from tr or fls the operation is evaluating its guard e1. If e1 = fls

then the operation is dequeued and then enqueued, so that when it will
be rescheduled it will restart evaluating its guard. If e1 = tr then the
operation is either evaluating its body e2 or when e2 is a value: if p = 0
(no steps were generated), then the operation is successfully completed and
therefore dequeued, otherwise, i.e., (σ, o(v)[St1 · · · Stp]〈tr〉{v}) where p ≥ 1,
the operation is dequeued and (σ, o[St1 · · · Stp]) is enqueued, so that when
it will be scheduled the evaluation of the guards of its steps will start.

Operation steps

St ::= o(v)〈e〉

in addition to the guard e, specify the actual parameters of the operation
step.

3.3.3 Evaluation Contexts and Redexes

Evaluations contexts are used for specifying the evaluation order of various
constructs. In particular, we will use it for expressions, and in this case, as
Proposition 1 states, they are deterministic. They identify the first redex
to be reduced. We will also use evaluation contexts later for activities and
operations. For operations these contexts are again deterministic, whereas
for activities they are not, since if there are many sub-activities, the choice
of which one to evaluate first is not fixed. However, once a sub-activity is
chosen, then the first expression to evaluate is uniquely determined.

An evaluation context for expressions E is an expression with one hole [[ ]]
in it. The term E [[e]] denotes the expression obtained from the context E
by substituting its hole with the expression e. Let ϕ ∈ {focus, unfocus}.
Evaluation contexts for expressions are defined as follows

E ::= [[ ]] | spawn G(v E e) | make A(v E e) | E ; e
| .f = E | next o(v E e) | signal(l(E)) | .p = E
| use e.o(e) :sns E | use E .o(e) :sns v

| use v.o(v E e) :sns v

| +memo(l(E)) | observe E .p
| ϕ(E , e) | ϕ(v, E) | sense E :filter l
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Evaluation contexts for expressions specify the standard call-by-value eval-
uation, where in general parameters are evaluated left-to-right. Redexes,
ranged over by rdx, are the elements of the set X = XA ∪ XG ∪ XX, where:

XX = {spawn G(v), make A(v), v; e}
XA = {.f, .f = v, .p, .p = v, next o(v), signal(l(v))}
XG = {.s, use v.o(v) :sns v, sense v :filter l,

?memo(l), -memo(l), +memo(l(v)), memo(l),
focus(v, v), unfocus(v, v), observe v.p,
completed(a), failed(a), fail}

The set XX contains the redexes that may occur in any context (opera-
tions/steps of artifact instances, or run-time activities of agent instances),
the set XA contain the redexes that may occur only in (operations/steps of)
artifact instances, and the set XG contains the redexes that may occur only
in (activities of) agent instances.

The following proposition states that evaluation contexts and redexes
decompose expressions in a unique way (the proof is straightforward by
structural induction on expressions). This proposition assumes that our set
of definitions is well typed, which is the assumption we made at the end of
the previous section.

Proposition 1 (Unique decomposition of expressions) Given an ex-
pression e, either e is a value or there is a unique evaluation context E such
that e = E [[rdx]] for some rdx.

Evaluation contexts for (expressions in) activities are defined as follows

R ::= a(w)[ ]{E} | a(w)[Sr R Sr]{e}
| a(w)[Sr P Sr]{e}

P ::= a(v)〈E , e〉 | a(v)〈tr, E〉 | a(v E e)〈e, e′〉

If an activity does not have sub-activities that have to be evaluated, then
the context selects the subexpression of its body that needs to be evaluated,
otherwise it (non-deterministically) selects one of its sub-activities with
the context P. The sub-activity may be a running activity (in which case
one of its subexpressions is evaluated), or one which specifies that the
evaluation of its parameters or persistence predicate or precondition is not
yet completed. In this case: first the parameters are evaluated left to right,
then the persistence predicate, and finally the precondition.
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For activities we also define a context S that (non-deterministically)
selects a sub-activity.

S ::= ([ ]) | a(v)[Sr S Sr]{e}

This context is needed when we want to identify a whole sub-activity, such
as when we have to schedule execution of sub-activities, whereas the context
R selects an expression within an activity.

Operation evaluation contexts are defined as follows

O ::= (σ, o(v)[St]〈E〉{e}) | (σ, o(v)[St]〈tr〉{E})
| (σ, o[o(v)〈fls〉 o′(v)〈E〉 St])

where with o(v)〈fls〉 we denote a sequence of steps all with guard equals to
fls. For an operation we first evaluate the guard expression, and in case
this is tr we also evaluate its body. Guards of steps are evaluated left to
right while the guard evaluates to false.

Finally, to account for the redexes that may occur in activities and operation
bodies (spawn G(v), make A(v), and v; e) we define agent/artifact instance
evaluation contexts, by

K ::= γ = 〈l v, σ,R〉G | α = 〈f = v, p = w, σ, O O〉 A

Note that, for artifact instances, the context selects the last operation of the
sequence of running operations, which is the running one.

3.3.4 Initial Configurations and Reduction Relation

Evaluation of an executable program starts from its initial configuration
defined as follows.

Definition 2 (Initial configuration) A program (GT, AT) is executable if
the agent table GT contains an entry for an agent with distinguished name
Main of the shape

agent Main { activity main () :agenda () {e; } }

The initial configuration associated to the executable program (GT, AT) is

γ = 〈∅, ∅, main( )[ ]{e}〉Main

for some reference γ.
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M ≡ M0 M0 −→ M1

M⇒ M1
[EMPTYCONT]

M ≡ M′ | M0 M0 −→ M1

M⇒ M′ | M1
[CONT]

Figure 7: Reduction rules: configuration congruence

For example, for our system of Figure 1, the initial configuration is:

γM = 〈∅, ∅, main( )[ ]{spawn Init(make Counter(0)); }〉Main

Note that, we can write the initial configuration as:

K[[make Counter(0)]] (1)

where K is
γM = 〈∅, ∅, main( )[ ]{spawn Init([[ ]])}〉Main

In the following, to shorten configurations, we will use for names of agents
and artifacts just the first letter of their name.

The reduction relation has the form M ⇒ M′ meaning that the config-
uration M reduces to configuration M′ in one step, where configurations are
defined as follows:

M ::= I | (M | M)
I ::= γ = 〈l v, σ, R〉G | α = 〈f = v, p = w, σ, O1 · · · On〉A | σ = 〈l v〉Sns

and the configuration congruence relation, ≡, formalizes the fact that config-
urations represents non-empty sets of instances, that is:

(M | M′) ≡ (M′ | M) ((M | M′) | M′′) ≡ (M | (M′ | M′′))

We use the congruence relation between configurations in the definition
of the relation ⇒, see rules [EMPTYCONT] and [CONT] of Figure 7.
Such rules rearrange agents/artifacts/sensors instances in order to apply
the reduction −→ for minimal configurations. Minimal configurations are
configurations containing exactly the agent/artifact/sensor instances involved
in the reduction. We write ⇒? for the reflexive and transitive closure of ⇒.

The rules in Figure 8 generate agents and artifacts. Creation may occur
in any context. Creation of an agent, rule [AGN], in addition to creating a
binding between a fresh identifier γ and an instance of an agent, creates m
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instances of sensors corresponding to the sensor identifiers declared in the
agent. The main activity is also started, setting up its sub-activities. Since
sub-activities have to be evaluated at least once, the persistence predicate
is set to tr. Parameters, persistence predicate and preconditions of sub-
activities may contain the formal parameters of the activity, therefore they
are substituted with the actual parameters of spawn G. For an artifact, rule
[ART], we create a binding between a fresh artifact identifier and an artifact
instance. Moreover, the fields and properties of the artifact are initialized to
the actual parameters of make A.

Take our initial configuration (1). The first (and only) reduction possible
is using rule [ART], that is

(1) −→ K[[αC]] | αC = 〈∅, count = 0, ∅, ∅〉C

and

K[[αC]] = K′[[spawn I(αC)]] where K′ is γM = 〈∅, ∅, main( )[ ]{[[ ]]}〉M

applying rule [AGN] to K′[[spawn I(αC)]] we get

γM = 〈∅, ∅, main( )[ ]{γI}〉M | γI = 〈∅, ∅, main(αC)[ ]{e1; e2; e3}〉I (2)

where (i) e1 is spawn O(αC), (ii) e2 is spawn U(αC), and (iii) e3 is spawn U(αC).
Most of the time configurations have more than one instance of agent,

artifact, or sensor in parallel. So to reduce configurations we apply [CONT]
(or [EMPTYCONT] if we just need to rearrange the term) with the chosen
rule applied to the minimal configuration on its premises. In the following we
will just show examples of application of the rule to minimal configurations.
The means by which ⇒ is obtained should be obvious. Applying [AGN]
to γI we generate a new agent instance of type Observer, and since there
is a sensor declared in its definition, we also generate a sensor instance.
The main activity of the agent Observer has two sub-activities: prepare

and monitoring whose persistence predicate is initialized to tr and the
precondition to the one specified in the definition of the sub-activity.

K′′[[spawn O(αC)]] −→
K′′[[γO]] | γO = 〈∅, σ, main(αC)[S1 S2]{}〉O | σ = 〈∅〉Sns (3)

where K′′ is

γO = 〈∅, ∅, main( )[ ]{[[ ]]; spawn U(αC); spawn U(αC)}〉I
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γ fresh activity main (T x) :agenda(SubAct1 · · · SubActn){e; } ∈ G

(for all i ∈ 1..n) SubActi = ai(e
i) :pers e′i :pre e′′i

Sri = ai(e
i[v/x])〈tr, e′′i [v/x]〉

Sns s1, . . . , sm ∈ G σ = σ1 · · ·σm (for all j ∈ 1..m) σj fresh

K[[spawn G(v)]] −→
K[[γ]] | γ = 〈∅, σ, main(v)[Sr1 · · · Srn]{e[v/x]}〉G

| σ1 = 〈∅〉Sns | · · · | σm = 〈∅〉Sns

[AGN]

α fresh U f; V p ∈ A

K[[make A(v w)]] −→ K[[α]] | α = 〈f = v, p = w, ∅, ∅〉A [ART]

K[[v; e]] −→ K[[e]] [SEQ]

Figure 8: Reduction rules: agent and artifact instances creation, sequential
composition

and

• S1 = prepare(αC)〈tr, tr〉, and

• S2 = monitoring(αC)〈tr, completed(prepare)〉.

Note that the persistence predicate of the sub-activity prepare is initialized
to tr (even though it was declared to be fls) so that the sub-activity is
scheduled a first time. As we will see later, when at the end of its execution
it is rescheduled again, then its persistence predicate will be initialized to
its definition. This causes exactly one execution of the sub-activity prepare.
Let us now assume that we apply [SEQ] that removes the value in the hole
of the agent γO. At this point the evolution of the system can go on either
spawning a User agent or starting the evaluation or scheduling the execution
of the sub-activity prepare, see rule [SCH] of Figure 10. Let us assume that
we spawn the two User agents and produce the following configuration:

γM = 〈∅, ∅, main( )[ ]{ }〉M | γI = 〈∅, ∅, main(αC)[ ]{ }〉I |
αC = 〈∅, count = 0, ∅, ∅〉C |
γO = 〈∅, σ, main(αC)[S1 S2]{}〉O | γU1 = 〈∅, σ1, main(αC)[SAU1]{}〉U |
γU2 = 〈∅, σ2, main(αC)[SAU2]{}〉U | σ = 〈∅〉Sns | σ1 = 〈∅〉Sns | σ2 = 〈∅〉Sns

(4)

where SAU1 and SAU2 denote usingCount(αC)〈tr, tr〉.
In Figure 9 we present the evaluation rules for expressions that may

occur only inside activities (and therefore agents). The first three rules deal
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with agent memos. Rule [MMmatch] is for reading, removing and querying
memos in the agent memo-space when the memo is present. When the
specified memo is not present in the agent memo-space, rule [MMmismatch]
generates a failure in case we try to read or remove, and returns fls if we
queried for presence of the memo via the predicate memo(l). Rule [MMins]
inserts the memo in the memo-space.

Rule [SNS] returns a reference to the instance of the sensor corresponding
to the identifier s (see rule [AGN] for the initialization of the sensors). If
an agent is well-typed there is always a sensor instance corresponding to
s. Rule [PER] extracts the first value associated with a specific label from
a sensor, in case no association for l is found the rule is not applicable,
therefore the activity is blocked. In this case, the presence of the label is a
run-time condition that may be used for synchronizing agent activities.

Rule [GETA] reads property pi of agent α. Rule [FOC], and [UNFOC]
start/stop focussing on the events of an artifact by inserting/removing the
sensor in the list of sensors of the artifacts.

Rule [USE] starts the operation o on the artifact α with parameters v

defining σ as the operation sensor. The operation is enqueued in the queue
of operations for the artifact α. Therefore, as we will see from the rules of
Figure 12, it will be the last one to be scheduled for execution.

Rule [FAIL] propagates a failure in an activity by replacing the activity
with a failed activity—this is a very primitive way of dealing with failure,
simplifying the actual simpA management of failures which is based on
standard try/catch constructs.

The last three rules check the state of the execution of sibling sub-
activities. The predicate completed(a), rule [COMPL], checks the presence
of the sub-activity a in the list of sub-activities. (When an activity is started
the evaluation of the sub-activities in its agenda is started by putting them
in the list of sub-activities, and when the evaluation of a sub-activity is
completed, the sub-activity is removed, so the list contains the sub-activities
not yet completed.) The auxiliary function actNames() is defined as follows

actNames(Sr) = {a | a(· · · )[· · · ]{· · · } ∈ Sr

or faileda ∈ Sr

or a(· · · )〈· · · , · · · 〉 ∈ Sr}

Rule [STARTED] checks whether a is in the list of sub-activities and it is a
running activity. The auxiliary function actStarted() is defined as follows

actStarted(Sr) = {a | a(· · · )[· · · ]{· · · } ∈ Sr}
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Finally, rule [FAILED] checks whether or not the sub-activity failed.
In Figure 10 we present the rules for scheduling the execution of sub-

activities. When an activity starts its execution, the sub-activities in its todo
list are put in the pool of sub-activities that needs to be evaluated with tr

as persistence predicate. Therefore, the evaluation of their precondition can
start. If the evaluation of the precondition produces tr, rule [SCH] starts
the evaluation of a sub-activity, named a, whose persistence predicate and
precondition are true. As already mentioned, since the sub-activities of a

have to be evaluated at least once, the persistence predicate is set to tr.
Preconditions may evaluate to fls, in this case, rule [PREC] restarts

the evaluation of the precondition. The body of the precondition is found in
the agenda of the activity a. Since this precondition may contain the formal
parameters of the activity a of which ai is a sub-activity, in the expression
the formal parameters of a must be substituted with the actual parameters
at the time he activity was started.

Rule [DISP] removes a sub-activity whose persistence predicate is false.
Note that, from rule [SCH], the persistence predicate may be fls only after
the first evaluation of the sub-activity. Indeed sub-activities that have to be
executed only once have persistence predicate fls.

Rule [END-SA] restart the evaluation of the parameters, persistence
predicate and precondition of a completed sub-activity, a′. The value v

resulting from the evaluation of the sub-activity is inessential. Note that in
this case, since the sub-activity a′ has already been evaluated at least once,
the persistence predicate to be evaluated is the one specified in the agenda
(with the substitution of parameters).

Going back to our configuration (4) we can schedule, applying [SCH],
either the sub-activity prepare of the agent γO, or one of the sub-activities
usingCount, of the agents γU1 or γU2 because all these sub-activities have
both predicates equal to tr. Assume we schedule prepare of the agent γO.
In the configuration of (4) the only think that changes is that sub-activity
S1 (prepare) from a sub-activity that was evaluating its predicates becomes
a sub-activity that is executing its body

γO = 〈∅, σ,S([main(αC)[S1 S2]{ }])〉O −→ γO = 〈∅, σ,S([main(αC)[S1
′ S2]{ }])〉O (5)

where the evaluation context S is ([ ]), and S1′ is

prepare(αC)[ ]{focus(αC, s); }
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l = l1 · · · ln (exists i ∈ 1..n) (for all j ∈ i+ 1..n) l = li ∧ l 6= lj

γ = 〈l v, ,R[[?memo(l)]]〉G −→ γ = 〈l v, ,R[[vi]]〉G
γ = 〈l v, ,R[[memo(l)]]〉G −→ γ = 〈l v, ,R[[tr]]〉G
γ = 〈l v, ,R[[-memo(l)]]〉G −→

γ = 〈l1 v1 · · · li−1 vi−1li+1 vi+1 · · · ln vn, ,R[[vi]]〉G

[MMmatch]

l = l1 · · · ln (for all i ∈ 1..n) l 6= li

γ = 〈l v, ,R[[?memo(l)]]〉G −→ γ = 〈l v, ,R[[fail]]〉G
γ = 〈l v, ,R[[-memo(l)]]〉G −→ γ = 〈l v, ,R[[fail]]〉G
γ = 〈l v, ,R[[memo(l)]]〉G −→ γ = 〈l v, ,R[[fls]]〉G

[MMmismatch]

γ = 〈l v, ,R[[+memo(l(v))]]〉G −→ γ = 〈l v l v, ,R[[v]]〉G [MMins]

Sns s1, . . . , sn ∈ G σ̄ = σ1 · · ·σn (exists i ∈ 1..n) s = si

γ = 〈 , σ,R[[.s]]〉G −→ γ = 〈 , σ,R[[σi]]〉G
[SNS]

l = l1 · · · ln (exists i ∈ 1..n) (for all j ∈ i+ 1..n) l = li ∧ l 6= lj

γ = 〈 , ,R[[sense σ :filter l]]〉G | σ = 〈l v〉Sns −→
γ = 〈 , ,R[[vi]]〉G | σ = 〈l1 v1 · · · li−1 vi−1li+1 vi+1 · · · ln vn〉Sns

[PER]

p = p1, . . . , pn w = w1 · · · wn (exists i ∈ 1..n) pi = p

γ = 〈 , ,R[[observe α.p]]〉G | α = 〈 , p = w, , 〉A −→
γ = 〈 , ,R[[wi]]〉G | α = 〈 , p = w, , 〉A

[GETA]

γ = 〈 , ,R[[focus(α, σ)]]〉G | α = 〈 , , σ, 〉A −→
γ = 〈 , ,R[[σ]]〉G | α = 〈 , , σ σ, 〉A [FOC]

γ = 〈 , ,R[[unfocus(α, σ)]]〉G | α = 〈 , , σ, 〉A −→
γ = 〈 , ,R[[σ]]〉G | α = 〈 , , σ-σ, 〉A [UNFOC]

operation o (U x) :guard e {e′; } ∈ A e1 = e[v/x] e2 = e′[v/x]

γ = 〈 , ,R[[use α.o(v) :sns σ]]〉G | α = 〈 , , , O〉A −→
γ = 〈 , ,R[[σ]]〉G | α = 〈 , , , (σ, o(v)[ ]〈e1〉{e2}) O〉A

[USE]

γ = 〈 , ,S([a(v)[ ]{E [[fail]]}])〉G −→ γ = 〈 , ,S([faileda])〉G [FAIL]

if (a ∈ actNames(Sr) ∪ actNames(Sr
′
)) then v = fls else v = tr

γ = 〈 , ,S([a′(v)[Sr P[[completed(a)]] Sr
′
]{e}])〉G −→

γ = 〈 , ,S([a′(v)[Sr P[[v]] Sr
′
]{e}])〉G

[COMPL]

if (a ∈ actStarted(Sr) ∪ actStarted(Sr′)) then v = tr else v = fls

γ = 〈 , ,S([a′(v)[Sr P[[started(a)]] Sr
′
]{e}])〉G −→

γ = 〈 , ,S([a′(v)[Sr P[[v]] Sr
′
]{e}])〉G

[STARTED]

if (faileda ∈ Sr Sr′) then v = tr else v = fls

γ = 〈 , ,S([a′(v)[Sr P[[failed(a)]] Sr
′
]{e}])〉G −→

γ = 〈 , ,S([a′(v)[Sr P[[v]] Sr
′
]{e}])〉G

[FAILED]

Figure 9: Reduction rules: agent instance basic instructions
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so that the body of prepare could be executed. To the configuration on the
right-side of the arrow of (5) we can apply rule [SNS] that is

γO = 〈∅, σ,R[[.s]]〉O −→ γO = 〈∅, σ,R[[αC]]〉O (6)

where

1. R is main(αC)[R1 S2]{ }, and

2. R1 is prepare(αC)[ ]{focus(αC, [[ ]]); }.

Since in the configuration (4) we have the artifact αC we can apply rule
[FOC], that is:

αC = 〈∅, count = 0, ∅, ∅〉C | γO = 〈∅, σ,R[[focus(αC, σ]]〉O −→
αC = 〈∅, count = 0, σ, ∅〉C | γO = 〈∅, σ,R[[σ]]〉O (7)

where R is as 1. above, and R1 is [[ ]]. The effect of [FOC] has been to add
the sensor σ private to the agent γO in the list of sensors of the artifact αC.
To γO we can apply [END-SA], i.e.,

γO = 〈∅, σ,S([main(αC)[prepare(αC)[ ]{σ} S2]{ }])〉O −→
γO = 〈∅, σ,S([main(αC)[ prepare(αC)〈fls, tr〉 S2 ]{ }])〉O (8)

As mentioned before, when a sub-activity is completed the rule [END-SA]
substitute the sub-activity with a pre-activity, that is the evaluation of the
persistence and precondition predicates of the activity. The persistence
predicate we use is the one of the declaration of the the sub-activity in the
code of the agent, that in this case is fls. We can now show an example of
the application of rule [DISP] that removes a sub-activity having persistence
predicate fls from the list of sub-activities (remember that the body of an
activity is evaluated only when the list of its sub-activities is empty. This is
realized by the first clause of the definition of R). So applying rule [DISP]
we have

γO = 〈∅, σ,S([main(αC)[ prepare(αC)〈fls, tr〉 S2 ]{ }])〉O −→
γO = 〈∅, σ,S([main(αC)[ S2 ]{ }])〉O (9)

Considering the application of the rule [COMPL] to the predicate
completed(prepare) of S2 for the configuration on the left side of the
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reduction arrow of (9) produces fls, whereas for the one on the right side
of the arrow produces tr.
Assume that we apply rule [SCH] to the agent γU1 of the configuration (4),
since both persistence and precondition predicates are tr

γU1 = 〈∅, σ1,S([main(αC)[SAU1]{ }])〉U −→
γU1 = 〈∅, σ1,S([main(αC)[usingCount(αC)[ ]{use c.inc() : sns s; }]{ }])〉U (10)

where the evaluation context S is ([ ]). Now another application of rule [SNS]
similar to (6) produces

γU1 = 〈∅, σ1,S([main(αC)[usingCount(αC)[ ]{use c.inc() : sns σ1; }]{ }])〉U

Since in the current configuration we have the artifact αC we can apply rule
[USE], that is:

αC = 〈∅, count = 0, σ, ∅〉C | γU1 = 〈∅, σ1,R[[use c.inc() : sns σ1]]〉O −→
αC = 〈∅, count = 0, σ, (σ1, inc( )[ ]〈tr〉{.count = .count + 1})〉C |
γU1 = 〈∅, σ,R[[σ1]]〉U

(11)

Note that now the artifact αC contains references to two sensors. One, σ1,
is local to the running operation inc and it is used for explicit signal

expressions that could be evaluated in the body of the operation. The other,
σ, is global to the artifact and is used to signal more general events such as
updating of properties or end of operations.

In Figure 11 we present the evaluation rules for expressions that may
occur only inside operations (and therefore artifacts). Rules [GET] and
[SET] return/modify the value of a field. Rule [GETPR] return the value of
a property whereas rule [SETPR] sets the value of a property, and moreover,
sends the event of updated property to all the agent focusing on the artifact,
by inserting in the sensors focusing on the artifact the label prop updated(pi)
associated with the value to which the property was set to.

Rule [GEN] signals the event l with value v by adding the association
between l and v to the sensor associated to the operation, and also to all
the sensors of all the agents focusing on the artifact.

Rule [NEXT] generates a new step, adding it to the sequence of steps
of the operation. Note that the last two expressions, as well as field and
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activity a′ (T x) :agenda (SubAct1 · · · SubActn) {e; } ∈ G

SubActi = ai(e)i :pers e′i :pre e′′i (1 ≤ i ≤ n)

γ = 〈 , ,S([a(w)[Sr a′(v)〈tr, tr〉 Sr
′
]{e′}])〉G −→

γ = 〈 , ,S([a(w)[Sr a′(v)[a1(e1[v/x])〈tr, e′′1 [v/x]〉 · · ·
· · · an(en[v/x])〈{, e〉[v/x]} Sr

′
]{e′}])〉G

[SCH]

activity a (T x) :agenda (SubAct1 · · · SubActn) {e; } ∈ G

SubActi = ai(e)i :pers e′i :pre e′′i (1 ≤ i ≤ n)

γ = 〈 , ,S([a(w)[Sr ai(v)〈tr, fls〉 Sr
′
]{e′}])〉G −→

γ = 〈 , ,S([a(w)[Sr ai(v)〈tr, e′′i [w/x]〉 Sr
′
]{e′}])〉G

[PREC]

γ = 〈 , ,S([a(w)[Sr ai(v)〈fls, e′〉 Sr
′
]{e′}])〉G −→

γ = 〈 , ,S([a(w)[Sr Sr
′
]{e′}])〉G [DISP]

activity a (T x) :agenda (SubAct1 · · · SubActn) {e; } ∈ G

SubActi = a′(e) :pers e′ :pre e′′ (1 ≤ i ≤ n)

γ = 〈 , ,S([a(w)[Sr a′(v)[ ]{v} Sr
′
]{e′′′}])〉G −→

γ = 〈 , ,S([a(w)[Sr a′(e[w/x])〈e′[w/x], e′′[w/x]〉 Sr
′
]{e′′′}])〉G

[END-SA]

Figure 10: Reduction rules: agent instance scheduling of sub-activities

property update may only occur in the evaluation of the body of an operation
(and not in the evaluation of its guard that is side effect free).

Assume that we schedule the execution of the operation inc of αC.
First, as the evaluation context for expressions require, we have to evaluate
the right-hand-side of the assignment to the property count. Even though,
we do not have arithmetical operations in our definition of expressions, we
can assume that they are evaluated by first evaluating their arguments and
them returning the result of the arithmetical operation. So

αC = 〈∅, count = 0, σ, (σ1, inc( )[ ]〈tr〉{.count = .count + 1})〉C

can be written as

αC = 〈∅, count = 0, σ,O[[.count]]〉C
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where O is (σ1, inc( )[ ]〈tr〉{.count = [[ ]]+1}). We can apply rule [GETPR]
that is:

αC = 〈∅, count = 0, σ,O[[.count]]〉C −→ αC = 〈∅, count = 0, σ,O[[0]]〉C (12)

Assume that the evaluation of the expression 0 + 1 produces 1, the artifact
can be written as

αC = 〈∅, count = 0, σ, (σ1, inc( )[ ]〈tr〉{E [[.count = 1]]})〉C

where E is [[ ]]. The application of rule [SETPR] is as follows:

αC = 〈∅, count = 0, σ, (σ1, inc( )[ ]〈tr〉{E [[.count = 1]]})〉C | σ = 〈∅〉Sns −→
αC = 〈∅, count = 1, σ, (σ1, inc( )[ ]〈tr〉{1})〉C | σ = 〈l 1〉Sns

(13)

where l is prop updated(count). So now if the Observer agent that focused
on the artifact is sensing the change of property count, it would get as result
the new value of the property.

In Figure 12 we present the state change rules for artifacts. Note that,
given the definition of K, and the rules in Figure 11 the operation that is
evaluated is always the last of the sequence (first of the queue). When the
guard of an operation is tr and the body is fully evaluated, there are two
cases: either some step was generated (during the evaluation of the body),
in which case rule [SELG] removes the current operation from the queue
and enqueues the step evaluation expression of the sequence of steps; or no
step was generated, that is, the operation is completed and can be dequeued,
rule [END]. In addition, rule [END] signals to all the agents focusing on the
artifact the completion of the operation. Since there is no value associated
with this event we use the value unit.

When the guard of an operation evaluates to fls, with rule [FLS], the
operation with its guard is dequeued and again enqueued in the queue of
operations (so, when its turn comes, it will be reevaluated) Note that, no
step could be generated during its evaluation since the guard is side effect
free.

The last two rules are applied when the operation in execution is the
evaluation of the guards of operation steps. If a guard of a step evaluates
to tr, then the evaluation continues with the body of the step, rule [SGO],
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U f ∈ A fi ∈ f

α = 〈f = v, , , O O[[.fi]]〉A −→ α = 〈f = v, , , O O[[vi]]〉A
[GET]

U f ∈ A fi ∈ f w = v[i 7→ v]

α = 〈f = v, , , O (σ, o(v)[St]〈tr〉{E [[.fi = v]]})〉A −→
α = 〈f = w, , , O (σ, o(v)[St]〈tr〉{E [[v]]})〉A

[SET]

pi wi ∈ p w

α = 〈f = v, , , O O[[.pi]]〉A −→ α = 〈f = v, , , O O[[wi]]〉A
[GETPR]

σ = σ1 · · ·σn pi vi ∈ p v w = v[i 7→ v] l = prop updated(pi)

α = 〈 , p = v, σ, O (σ, o(v)[St]〈tr〉{E [[.pi = v]]})〉A

| σ1 = 〈l1 v1〉Sns | · · · | σn = 〈ln vn〉Sns
−→
α = 〈 , p = w, σ, O (σ, o(v)[St]〈tr〉{E [[v]]})〉A

| σ1 = 〈l v l
1
v1〉Sns | · · · | σn = 〈l v l

n
vn〉Sns

[SETPR]

σ = σ1 · · ·σn

α = 〈 , , σ, O (σ, o(v)[St]〈tr〉{E [[signal(l(v))]]})〉A

| σ = 〈l v〉Sns | σ1 = 〈l1 v1〉Sns | · · · | σn = 〈ln vn〉Sns
−→
α = 〈 , , σ, O (σ, o(v)[St]〈tr〉{E [[v]]})〉A

| σ = 〈l v l v〉Sns | σ1 = 〈l v l
1
v1〉Sns | · · · | σn = 〈l v l

n
vn〉Sns

[GEN]

step o′ (U x) :guard e {· · · } ∈ A

α = 〈 , , , O (σ, o(v)[St]〈tr〉{E [[next o′(w)]]})〉A −→
α = 〈 , , , O (σ, o(v)[St o′(w)〈e[w/x]〉]〈tr〉{E [[α]]})〉A

[NEXT]

Figure 11: Reduction rules: artifact instance basic instructions

and everything else is disregarded. If instead all the guards of the steps
evaluated to fls, with rule [SKIP] their evaluation is rescheduled and put
at the beginning of the sequence.

An application of rule [END] is as follows:

αC = 〈∅, count = 1, σ, (σ1, inc( )[ ]〈tr〉{1})〉C | σ = 〈l 1〉Sns −→
αC = 〈∅, count = 1, σ, ∅〉C | σ = 〈l′ unit l 1〉Sns (14)

where l′ is op exec completed(inc). This event could be sensed by the
Observer agent that focused on the artifact.
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n > 0

α = 〈 , , , O (σ, o(v)[St1 · · · Stn]〈tr〉{v})〉A −→
α = 〈 , , , (σ, o[St1 · · · Stn]) O〉A

[SELG]

σ = σ1 · · ·σn l = op exec completed(o)

α = 〈 , , , O (σ, o(v)[ ]〈tr〉{v})〉A | σ1 = 〈l1 v1〉Sns | · · · | σn = 〈ln vn〉Sns −→
α = 〈 , , , O〉A | σ1 = 〈l unit l

1
v1〉Sns | · · · | σn = 〈l unit l

n
vn〉Sns

[END]

operation o (U x) :guard e {e′; } ∈ A

α = 〈 , , , O (σ, o(v)[St]〈fls〉{e′′})〉A −→
α = 〈 , , , (σ, o(v)[ ]〈e[v/x]〉{e′′[v/x]}) O〉A

[FLS]

step o′ (U x) :guard e {e′; } ∈ A
α = 〈 , , , O (σ, o[o(v)〈fls〉 o′(v′)〈tr〉 St])〉A −→

α = 〈 , , , O (σ, o′(v′)[ ]〈tr〉{e′[v′/x]})〉A
[SGO]

step oi (U
i
xi) :guard ei {· · · } ∈ A (1 ≤ i ≤ n) ∧ n > 0

α = 〈 , , , O (σ, o[o1(v1)〈fls〉 · · · on(vn)〈fls〉])〉A −→
α = 〈 , , , (σ, o[o1(v1)〈e1[v1/x1]〉 · · · on(vn)〈en[vn/xn]〉]) O〉A

[SKIP]

Figure 12: Reduction rules: artifact instance state change

4 FAAL Type Soundness

This section shows that FAAL enjoys the standard type soundness property
of statically typed languages. Namely, the execution of a well-typed program
does not get stuck: that is, if a running agent has some ongoing activity
or an artifact has some operation to perform, then there is some rule
that can be applied. To state the type soundness result for FAAL we
introduce a suitable notion of typing for configurations, show that the initial
configuration of a well-typed program is well-typed, and that reducing a well-
typed configuration produces a well typed configuration (subject reduction).
Moreover, we show that if an agent it is not sensing an event or it does not
have failed sub-activities, then some rule is applicable (progress). In this
section we only state the main results, whose (technical) proof is given in
the Appendix.

4.1 Well-Typed Configurations

In order to give types to run-time expressions we have to modify the
type system by replacing the type environment Γ (mapping variables to
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activity a(T x) · · · ∈ G

Σ  e : Bool in G

Σ  e′ : Bool in G

Σ  e : T in G

Σ  a(e)〈e, e′〉 ok in G

activity a(T x) · · · ∈ G

(for all i ∈ 1..n) Σ  Sri ok in G

Σ  e : · · · in G Σ  v : T in G

Σ  a(v)[Sr1 · · · Srn]{e} ok in G

activity a · · · ∈ G

Σ  faileda ok in G

Σ  R ok in G agent G { Sns s1 · · · sn; · · · }
(for all σ ∈ σ1 · · ·σn) Σ(σ) = Sns

Σ  γ = 〈l v, σ, R〉G ok

Figure 13: Well typed run-time sub-activities/activities and agent instances

types) with the run-time type environment Σ, denoted by [ι : T], mapping
agents/artifacts/sensors references to types. The new typing judgement

Σ  e : T in X

means that, under the assumptions in Σ for references, the expression e has
type T in the context of an instance of the artifact or agent X. The rules of
the system are obtained from the rules of Figure 4 by replacing Γ with Σ,
and replacing rule [Tvar], with

Σ  ι : Σ(ι) in X [Tid]

The typing of run-time expressions is used to define well typed configu-
rations. In particular the judgments for:

• run-time sub-activities/activities and agent instances are given in
Figure 13;

• run-time steps/operations and artifact instances are given in Figure 14;

• run-time sensor instances are given in Figure 15;

• configurations are given in Figure 16, where the auxiliary function
typeEnv is defined by:

typeEnv(ι1 = 〈· · · 〉T1 | · · · | ιn = 〈· · · 〉Tn) = [ι1 : T1, . . . , ιn : Tn]

Note that if ` M ok, and M ≡ M′, then ` M′ ok.
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Σ  e : Bool in A

e side effect free
step o(U x) · · · ∈ A

Σ  v : U in A

Σ  o(v)〈e〉 ok in A

Σ  e : Bool in A e side effect free
Σ  e′ : · · · in A

operation o · · · ∈ A or step o · · · ∈ A

Σ(σ) = Sns

(for all i ∈ 1..n) Σ  Sti ok in A

Σ  (σ, o(v)[St1 · · · Stn]〈e〉{e′}) ok in A

Σ  (σ, o[St1 · · · Stn]) ok in A

artifact A {T f; T
′
p; · · · }

Σ  v : T in A Σ  w : T
′
in A

(for all σ ∈ σ) Σ(σ) = Sns

(for all i ∈ 1..n) Σ  Oi ok in A

Σ  α = 〈v, p w, σ, O1 · · · On〉A ok

Figure 14: Well typed run-time steps/operations and artifact instances

typeOfLab(l) = typeOf(v)

Σ  σ = 〈l v〉Sns ok

Figure 15: Well typed run-time sensor instances

typeEnv(I1 | · · · | In) = Σ (for all i ∈ 1..n) Σ  Ii ok

` I1 | · · · | In ok

Figure 16: Well typed configurations
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4.2 Type Soundness

In this section we state Subject Reduction and Progress for well-typed
configurations, and Type Soundness of well-typed programs. In the following
we assume that the program containing the definition of the agents and
artifacts is well-typed, i.e., ` (GT, AT) ok.

The subject reduction theorem says that by reducing a well typed
configuration we obtain a well typed configuration.

Theorem 1 (Subject Reduction) If ` M ok and M⇒ M′, then ` M′ ok.

Proof: The proof is given in Appendix A.1. 2

In order to state the progress result we define when an agent has
completed its task, successfully or with failure, and when an agent is blocked
in a configuration, that is the agent cannot reduce. This is if all its activities
are doing a sense on sensors not containing the specified label (so to proceed
in the evaluation of the activity the agent has to wait for some artifact to
signal on those sensors).

Definition 3 (Completed agent) The agent instance γ = 〈l v, σ, R〉G is
completed if R = failedmain, or R = main(v)[ ]{v}.

Definition 4 (Blocked agent in a configuration) Let M = I1 | · · · | In
be a configuration.

• The expression e is blocked in M if e = E [[sense σ :filter l]], and
there exist j ∈ 1..n such that Ij is σ = 〈l′ v′〉Sns and l 6∈ l

′
.

• The activity a(v)[ Sr1 · · · Srm ]{e} is blocked in M if

1. either m = 0, and e is blocked in M, or

2. m > 0, and for all i, 1 ≤ i ≤ m, either Sri is is blocked in M, or
Sri = faileda

′
for some a′.

• The agent γ = 〈l v, σ, R〉G is blocked in M if R is blocked in M.

Note that in the definition of blocked activity we require that the sensor
on which the activity is doing the sense be defined. The type system will
ensure that the required sensor is present. Obviously, absence or presence of
the label is used to coordinate agents and artifacts.

An artifact is idle if it does not have any pending operation.
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Definition 5 (Idle artifact instance) An artifact instance α = 〈f =
v, p = w, σ, O〉A is idle if O = ∅.

Theorem 2 (Progress) If ` M ok, M = I1 | · · · | In and (for some i ∈
1..n) Ii is an agent non-completed and non-blocked in M, or a non-idle
artifact, then M⇒ M′ for some M′.

Proof: The proof is given in Appendix A.2. 2

Theorem 3 (Type Soundness) If I is the initial configuration of (GT, AT)
and I ⇒? M with M = I1 | · · · | In not reducible, then ` M ok and (for all
i ∈ 1..n) Ii is either a sensor or an idle artifact or a completed or blocked
agent.

Proof: First observe that, if I is the initial configuration of (GT, AT), then
` I ok (the proof is straightforward by induction on expressions). Then,
the result follows immediately from Theorems 1 and 2. 2

5 Related Work

The literature related to the present paper has been partially quoted in the
introduction. We add here comparisons and remarks concerning core calculi
for agents, actors and concurrent objects.

In the Agent-Oriented Programming literature, many contributions
introduced a formal semantics for abstract or concrete agent programming
languages, with the purpose of providing a rigorous and formal account
for the design, specification and verification of agent programs. One of
the first examples is [29], which describes the operational semantics of an
abstract BDI-based agent programming language, combining features of
logic programming and imperative programming. Actually, operational
semantics has been widely adopted to formally describe the behaviour of
agent programming languages and frameworks (e.g., [50, 57]), as well as of
specific aspects of multi-agent systems, such as agent communication (e.g.,
[46, 22]), agent organisations (e.g., [23]), etc. Examples of concrete agent
programming languages which enjoy a formal operational semantics are
Jason [9], 2APL [19] and GOAL [30].

In all these works, the operational semantics is used essentially to
specify formally the behaviour of the agent (abstract) machines executing
agent programs. To the authors’ knowledge, no investigations about a type
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system supporting standard type soundness for an agent-based programming
framework have been developed so far. The most direct attempt that has
been done so far applying formal modelling techniques like core calculi to
study properties of agent-oriented programs and of agent-oriented extensions
of object-oriented systems is [52], to which the present work is mainly an
extension. Such a formalisation, however, lacks a type system that is able
to guarantee well-formedness properties of programs. Building on top of
[52], this paper formalised a larger set of features (including agent agenda
and artifact properties) and provided a type soundness result. In [17, 18]
we introduced a core calculus for agents and artifacts (of which the current
calculus is an extension), outlined its operational semantics, and discussed
its main properties.

Core calculi and type systems are applied to programming frameworks
which, although not strictly agent-based, have many similarities that are
worth mentioning. In [11, 44] a calculus is introduced on a very weak notion of
agent, namely, an active entity (like an actor or process) exchanging messages
asynchronously. Accordingly, such a formalisation does not consider the
environment and related concepts, concerning percepts and actions, which
are instead a core part of FAAL. These aspects are considered instead in
the layered agent calculus [38], which is not introduced – however – for
formalising the features of an agent programming language.

In their seminal book [1], Abadi and Cardelli develop a theory of
objects as a foundation for object-oriented languages and programming,
and introduce some object calculi, which are formalisms at the same level
of abstraction as function calculi, but based exclusively on objects rather
than functions. They study both functional/imperative and untyped/typed
systems. Our modelling of artifacts, which can be seen as asyncronous
objects, is inspired to their imperative calculi. However, concurrency, situat-
edness and autonomy, are not considered, and therefore agents, cannot be
straightforwardly modelled with such calculi.

A number of core languages have been proposed for actors and object-
oriented concurrent programming, almost all of which are based on some
kind of process calculi. Examples are: CAP [12], a process calculus based
on the actor model; Honda and Tokoro’s object calculus with asynchronous
communication [31]; the Join calculus [24], which has been used in the
formalisation of features of various concurrent programming languages (such
as Polyphonic C# [6] and Join Java [36]); and StateJ [16, 15] (see also [14,
13]), that proposes state classes, a construct for making the state of a
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concurrent object explicit.

Type systems have been widely used for analysing the behavior of
concurrent programs and systems of concurrent processes, to reason about
deadlock-freedom, safe usage of locks, etc. [64, 41]. Typically, variants of
the π-calculus [45] are used as target language. Some process calculi ex-
tending the π-calculus have been introduced to model specifically mobile
agents [25, 48, 20]. Nomadic Pict, see [55], emphasizes location depen-
dence/independence, and provides a distributed infrastructure, see [56], for
the migration of mobile agents. The Distributed-π calculus [28, 27] is a
typed language for mobile agents extending the π-calculus with an explicit
notion of location that represent the environment where such agents are
currently located. The type system is based on the notion of location types,
which describe the set of resources (i.e., typed channels to communicate
with other agents) available to an agent at a location. The notion of type in
this case is introduced for controlling the use of resources in a distributed
system.

Finally, the notion of session type has been introduced to specify complex
interaction protocols, verified by static typechecking [32]. In the core calculus
presented the interaction between agents and artifacts, and the dependency
between actions and sub-actions is programmed via predicates: preconditions
for activities and guards for artifacts. Session types, and in particular
multiparty session types (see [33]), could be used to impose (and verify
statically) restrictions on the pattern of interaction, as hinted in the following
section.

6 Conclusion and Further Work

The FAAL calculus provides a first step towards a rigorous formal framework
for designing agent-oriented languages and studying properties of agent-
oriented programs. It enjoys the standard type soundness property of
statically typed languages. Namely, the execution of a well-typed program
does not get stuck: that is, if a running agent has some ongoing activity or an
artifact has some operation to perform, then there is some rule that can be
applied. In particular, the type system has been designed to guarantee that
a number of properties are satisfied, including the following: (i) agents may
execute (and query) activities and access sensors only if these are defined for
them; (ii) agents may invoke operations and observe properties only if these
are defined for the target artifact; (iii) artifacts may only access/modify
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fields and properties defined for them; and finally, (iv) channels (sensors)
supporting the communication between agents and artifacts are typed so
that they signal values of known types.

Future work will be focussed on two main directions. The first direction
concerns enriching the current language and its formal model. In particular,
we are investigating the suitable definition of pre/post/invariant conditions
in terms of sets of memos that must be present or absent in the memo space,
so that it would be possible to represent high-level properties related to
the set of activities, such as the fact that an activity A would be executed
always after an activity A′ or that activities A and A′ cannot be executed
together. The second direction is about studying and defining agent calculi
and type systems for agent oriented programming languages based on high-
level models/architectures, such as BDI (Belief Desire Intention) [49], which
is one of the main references in programming rational/intelligent agents.
Differently from simpA, such languages adopt high-level cognitive concepts –
such as tasks, goals, plans, beliefs – to define agent structure and behaviour.
A medium-term goal we believe can be reached is to substantially fill the
gap between object- and agent-orientation, fostering the adoption of new
metaphors, abstractions and patterns for tackling the concurrency issue.
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APPENDIX

A Proofs

A.1 Proof of Theorem 1 (Subject Reduction)

Both the type system for programs (system `, presented in Section 3.2) and
the type system for configurations (system , presented in Section 4.1) are
syntax directed and enjoy the inversion property. The inversion property
for the typing rule for configurations (in Figure 16) is given by Lemma 1.1
below. We do not give the inversion lemmas for the other rules of systems `
and  since they are trivial. Let X range over agent/artifact types and let
Y range over agent/artifact types and C.
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Lemma 1 1. If ` I1 | · · · | In ok and typeEnv(I1 | · · · | In) = Σ, then
Σ  Ii ok (for all i ∈ 1..n).

2. Let Σ  I ok, then there exists a type T such that

(a) I = (γ = 〈l v, σ,R[e]〉G) implies Σ  e : T in G, and

(b) I = (α = 〈v, p w, σ, O O[e]〉 A) implies Σ  e : T in A.

Proof:

1. By definition of well typed configurations, see Figure 16

2. By structural induction on the contexts R and O (see Section 3.3.3)
using the typing rules in Figures 4, 5 and 6.

2

Lemma 2 (Weakening) If Σ  I ok and Σ′ ⊇ Σ, then Σ′  I ok.

Proof: Straightforward, by induction on derivations. 2

To simplify the presentation, we define a context G that (non determin-
istically) selects a sub-activity in an agent instance (the context S has been
defined in Section 3.3).

G ::= γ = 〈l v, σ,S〉G

Lemma 3 (Replacement) 1. Let Σ  K[e] ok and Σ  e : T in X,
then Σ  e′ : T in X implies Σ  K[e′] ok.

2. Let Σ  G[Sr] ok and Σ  Sr ok in G, then Σ  Sr′ ok in G implies
Σ  G[Sr′] ok.

Proof: Straightforward, by induction on derivations. 2

Lemma 4 (Substitution) 1. If [x x′ : X C] ` e : T in G, and typeOf(v) =
C, then [ι : X]  e[ι v/x x′] : T in G.

2. If [x x′ : Y C] ` e : T in A, and typeOf(v) = C, then [ι : Y]  e[ι v/x x′] :
T in A.

Proof: Straightforward, by induction on expressions. 2

Lemma 5 (Subject Congruence) If ` M ok and M ≡ M′, then ` M′ ok.
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Proof: Straightforward, by using Lemma 1.1. 2

Lemma 6 (Subject Reduction) 1. If ` M0 ok and M0 −→ M1, then
` M1 ok.

2. If ` M′ | M0 ok and M0 −→ M1, then ` M′ | M1 ok.

Proof: We consider the proof of 1. (the proof of 2. is similar). The proof
is by case analysis on the operational semantics rule (in Figures 8, 9, 10, 11
or 12) used. Cases [SEQ], [MMmatch] (only first conclusion), [MMmismatch],
[SNS], [GETA], [COMPL], [STARTED], [FAILED], [GET] and [GETPR]
are immediate by Lemma 3.1. Cases [FAIL] and [DISP] are immediate by
Lemma 3.2.

Case [AGN]. We have Σ  K[[spawn G(v)]] ok. Let Σ′ = Σ ∪ [γ =
G, σ1 : Sns, . . . , σm : Sns]. By Lemmas 2 and 3.1 we have Σ′  K[[γ]] ok.
From ` agent G {· · · } ok, by inversion for `, Lemma 4.1 and the typing
rules in Figure 13 we get Σ′  γ = 〈∅, σ, main(v)[Sr1 · · · Srn]{e[v/x]}〉G ok.
By the typing rule in Figure 15 we get Σ′  σi = 〈∅〉Sns ok (1 ≥ i ≥
m). Then, by the tying rule in Figure 16 we get Σ′  K[[γ]] | γ =
〈∅, σ, main(v)[Sr1 · · · Srn]{e[v/x]}〉G | σ1 = 〈∅〉Sns | · · · | σm = 〈∅〉Sns ok.

Case [ART]. Similar to the previous case.

Cases [MMmatch] (second and third conclusion), [MMins], [PER], [FOC]
and [UNFOC]. Straightforward by using Lemmas 1 and 3.1.

Case [USE]. Straightforward by using Lemmas 1, 3.1 and 4.2.

Cases [SCH], [PREC] and [END-SA]. Straightforward by using Lemma 3.2
and 4.1.

Cases [SET], [SETPR], [GEN], [SELG] and [END]. Straightforward by
using inversion.

Cases [NEXT], [FLS], [SGO] and [SKIP]. Straightforward by using
inversion and Lemma 4.2. 2

Proof of Theorem 1 (Subject Reduction):

By case analysis on the operational semantics rule (in Figure 7) used. Case
[EMPTYCONT] follows by Lemmas 5 and 6.1. Case [CONT] follows by
Lemmas 5 and 6.2.
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A.2 Proof of Theorem 2 (Progress)

Let the set of expressions be partitioned in the following sets:

EX = {spawn G(e), make A(e), e1; e2, v}
EA = {.f, .f = e, .p, .p = e, next o(e), signal(l(e))}
EG = {.s, use e2.o(e) :sns e1, sense e :filter l,

?memo(l), -memo(l), +memo(l(e)), memo(l),
focus(e1, e2), unfocus(e1, e2), observe e.p,
completed(a), failed(a), fail}

Lemma 7 Let γ = 〈l v, σ, R〉G be an agent instance, and let Σ  γ =
〈l v, σ, R〉G ok for some Σ, and ` agent G { Sns s̄; Act} ok. Then R

contains only (sub)expressions in EG ∪ EX, or identifiers in s̄, i.e., R does not
contain variables, or identifiers not in s̄, or expressions in EA.

Proof: Observe that the typing rules of Figure 4 and 5 are such that only
expressions in EG ∪ EX are allowed in activities, and only sensor identifiers in
s̄. The rule for agent creation, [AGN] of Figure 8, replaces all the variables
in the body of the main activity of the agent with values, and the reduction
rules of Figure 9 replace expressions in EG ∪ EX with either values or the
expression fail ∈ EG. Finally the rules for scheduling of agents of Figure 10
are such that only expressions in EG ∪ EX and not containing variables are
inserted in the running activities. 2

Lemma 8 Let γ = 〈l v, σ, R〉G be a non-completed and non-blocked agent in-
stance, let Σ  γ = 〈l v, σ, R〉G ok for some Σ, and ` agent G { Sns s̄; Act} ok.
Then

1. there is R, and rdx such that R = R[[rdx]], rdx ∈ XG ∪ XX. Moreover,

(a) if rdx is started(a), or failed(a), or completed(a), then R =
S([a′(v)[Sr P[[rdx]] Sr

′
]{e}]), for some S, P, a′, v, Sr, Sr

′
, and e;

(b) if rdx = fail then R = S([a′(v)[ ]{E [[rdx]]}]), for some S,E,a′, v;

or

2. R = S([a(w)[Sr a′(v)〈v, e〉 Sr
′
]{e′}]) for some for some S, a, a′, w, v,

Sr, Sr
′
, v, e, and e′ such that: v = tr implies e = v′ for some v′

or

3. R = S([a(w)[Sr a′(v)[ ]{v} Sr
′
]{e}]) for some S, a, a′, w, v, Sr, Sr

′
,

v, and e.
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Proof: Since the agent is non-completed R is main(v)[Sr1 · · · Srn]{e}, and
n = 0 implies that e is not a value.
If n = 0, from Lemma 1 there is a unique evaluation context E and redex rdx

such that such that e = E [[rdx]]. From Lemma 7 rdx ∈ XG ∪ XX. Therefore,
the evaluation contextR = main(v)[ ]{E} is such that R = R[[rdx]]. Moreover,
since e is the body of the main activity, from ` agent G { Sns s̄; Act} ok
we have that rdx cannot be started(a), or failed(a), or completed(a). So,
1. holds.
By structural induction on non-blocked activities with some (non zero)
subactivities.
Let R′ = a(v)[Sr1 · · · Srn]{e} with n > 0. Since R′ is non-blocked there is i,
1 ≤ i ≤ n such that:

(α) Sri = a′(e)〈e′, e′′〉 for some a′, e, e′, e′′ , or

(β) Sri = a′(w)[Sr
′
]{e′} for some a′, w, e′, Sr

′
and Sri is not blocked.

Consider case (α).
If one of the expression in e = e1 · · · em is not a value, say ej , from Lemma 1
there is a unique evaluation context E and redex rdx such that ej = E [[rdx]].
If rdx is not started(a), or failed(a), or completed(a), let R be

a(v)[Sr1 · · · Sri−1 a′(v E ej+1 · · · em)〈e′, e′′〉 Sri+1 · · · Srn]{e}

we have that R′ = R[[rdx]], and 1. holds.
If rdx is started(a), or failed(a), or completed(a), let P = a′(v E ej+1 · · · em)〈e′, e′′〉
and S = ([ ]), we have that R′ = S([a(v)[Sr1 · · · Sri−1 P[[rdx]] Sri+1 · · · Srn]{e}])
and 1(a) holds. Note that rdx cannot be fail since by the typing rule for
activities in Figure 5, parameters, persistency, and preconditions of sub-
activities must be side effect free, and therefore cannot contain fail.
Similar if the expressions in e are values and e′ is not a value, or e are values,
e′ = tr, and e′′ is not a value. (By using the suitable evaluation context.)
If the expressions in e are values and e′ 6= tr, or e′ = tr, and e′′ is a value,
with S = ([ ]) then 2. holds.
Consider case (β).
If n = 0 and e′ is a value, with S = ([ ]) and 3. holds. If e′ is not a value, as
before e′ = E [[rdx]]. Note that, rdx cannot be started(a), or failed(a), or
completed(a) since by the typing rule for activities in Figure 5, the body of
an activity may not contain such expressions. If rdx 6= fail define R to be

a(v)[Sr1 · · · Sri−1 a′(w)[ ]{E} Sri+1 · · · Srn]{e}
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and we have that R′ = R[[rdx]], so 1. holds.
In case rdx = fail define S = a(v)[Sr1 · · · Sri−1 ([ ]) Sri+1 · · · Srn]{e}.
Therefore, R′ = S([a′(w)[ ]{E [[rdx]]}]) and 1(b) holds.
If n > 0 we can apply the inductive hypothesis to Sri = a′(w)[Sr

′
]{e′} and

we have that:

1′. there is R, and rdx such that Sri = R[[rdx]], rdx ∈ XG ∪XX. Moreover,

(a) if rdx is started(a), or failed(a), or completed(a), then Sri is

S([a1(v1)[Sr
1 P[[rdx]] Sr

2
]{e1}])

for some S, P, a1, v1, Sr
1
, Sr

2
, and e1;

(b) if rdx = fail then Sri is S([a1(v1)[ ]{E [[rdx]]}]), for some S, E ,
a1, v1;

or

2′. Sri = S([a1(w1)[Sr
1

a2(v1)〈v, e1〉 Sr
2
]{e2}]) for some for some S, a1,

a2, w1, v1, Sr
1
, Sr

2
, v1, e1, and e2 such that: v1 = tr implies e1 = v2

for some v2

or

3′. Sri = S([a1(w1)[Sr
1

a2(v1)[ ]{v1} Sr
2
]{e1}]) for some S, a1, a2, w1, v1,

Sr
1
, Sr

2
, v1, and e1.

Consider case 1′.
If rdx is not fail, or started(a), or failed(a), or completed(a), define

R′ = a(v)[Sr1 · · · Sri−1 R Sri+1 · · · Srn]{e}

then R′ = R′[[rdx]] and 1. holds. If instead rdx is either one of the four previ-
ously mentioned redexes, define S ′ = a(v)[Sr1 · · · Sri−1 S Sri+1 · · · Srn]{e},
and again 1. holds.
For cases 2′ and 3′ define S ′ = a(v)[Sr1 · · · Sri−1 S Sri+1 · · · Srn]{e} and
the corresponding results hold.
2

Lemma 9 (Canonical Lemma) Let Σ = typeEnv(I1 | · · · | In), and
Σ  v : T in G.

1. if T = Sns, then v = σ, and and for some, k, 1 ≤ k ≤ n, Ik is
σ = 〈· · · 〉Sns;
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2. if T = A, then v = α, and and for some, k, 1 ≤ k ≤ n, Ik is α = 〈· · · 〉A;

3. if T = Bool, then v = tr, or v = fls;

4. if T = typeOf(c), then v = c.

Proof: By case analysis on the typing rules. 2

Lemma 10 (Non-blocked agent progress lemma) Let M = I1 | · · · |
In be such that ` M ok, and let Ik (for some k ∈ 1..n) be an agent instance
not completed and not blocked in M. Then M⇒ M′ for some M′.

Proof: Let Ik be γ = 〈l v, σ, R〉G. Let typeEnv(M) = Σ. From ` M ok we
have that Σ  γ = 〈l v, σ, R〉G ok. Therefore, Σ  R ok in G and for all
σ ∈ σ we have that Σ(σ) = Sns, i.e., there is j, j ∈ 1..n, such that Ij is
σ = 〈l v〉Sns.

Since we are assuming a well-typed program, ` agent G { Sns s̄; Act} ok,
from Lemma 8 we have that

1. there is R, and rdx such that R = R[[rdx]], rdx ∈ XG ∪ XX. Moreover,

(a) if rdx is started(a), or failed(a), or completed(a), then R =
S([a′(v)[Sr P[[rdx]] Sr

′
]{e}]), for some S, P, a′, v, Sr, Sr

′
, and

e;

(b) if rdx = fail then R = S([a′(v)[ ]{E [[rdx]]}]), for some S, E , a′, v;

or

2. R = S([a(w)[Sr a′(v)〈v, e〉 Sr
′
]{e′}]) for some for some S, a, a′, w, v,

Sr, Sr
′
, v, e, and e′ such that: v = tr implies e = v′ for some v′

or

3. R = S([a(w)[Sr a′(v)[ ]{v} Sr
′
]{e}]) for some S, a, a′, w, v, Sr, Sr

′
, v,

and e.

Consider the three cases.

1. By cases on the redex rdx ∈ XG ∪ XX.
For most of the redexes the corresponding reduction rule does not have
restrictions. We only analyze the ones that require the well-typedness
of the configuration in order to reduce.
If rdx = spawn G(v) from the fact that the program is well-typed, G
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is a defined agent and it has a main activity, and, from the typing
rule [TnewG] the number of actual parameters matches the one of the
formal parameters of the main activity. Therefore, [AGN] is applicable.
Note that, subject reduction ensure that also the types are matching.
If rdx = make A(v), from the fact that the program is well-typed, A is
a defined artifact, and, from typing rule [TnewA] the number of actual
parameters matches the number of fields and properties of the artifact.
Therefore, [ART] is applicable.
If rdx = .s, from typing rule [Tsns], we have that s ∈ s̄, say s = si,
and Sns s̄ ∈ G. Moroever, from γ = 〈l v, σ, R〉G the ith sensor instance
exists. Therefore, reduction rule [SNS] is applicable.
If rdx = sense v :filter l, from typing rule [Tperc], Σ  v : Sns in G.
Therefore, from Lemma 9, v = σ, and for some, k, 1 ≤ k ≤ n, Ik is
σ = 〈l v〉Sns. If l = li for some i, then rule [PER] is applicable. If
not, since the agent is not blocked, either there are other expressions
reducible or case 2. or 3. hold, and therefore the term would reduce.
If rdx = use v2.o(v) :sns v1, from typing rule [Top], Σ  v2 : A in G,
and the operation o is defined in A and as as many formal parameters
as the values in v. From Lemma 9, v2 = α, and for some, k, 1 ≤ k ≤ n,
Ik is α = 〈· · · 〉A. Therefore, reduction rule [USE] is applicable.
If rdx = focus(v1, v2) from typing rule [Tfocus], Σ  v2 : A in G.
From Lemma 9, v2 = α, and for some, k, 1 ≤ k ≤ n, Ik is α =
〈· · · 〉A. Therefore, reduction rule [FOC] is applicable. Similar for
unfocus(v1, v2).
If rdx = observe v1.p from typing rule [TpropA], Σ  v1 : A in G, and
p is a property defined in A. From Lemma 9, v1 = α, and for some,
k, 1 ≤ k ≤ n, Ik is α = 〈· · · 〉A. Therefore, reduction rule [GETA] is
applicable.

2. From Σ  R ok in G we have Σ  a′(v)〈v, e〉 ok in G. Therefore,
Σ  v : Bool in G, and Σ  e : Bool in G. From Lemma 9, v = fls

or v = tr. If v = fls then rule [DISP] is applicable. If v = tr, then
e = v′ for some v′. From Lemma 9 then e = fls or e = tr. In the
first case rule [PREC] is applicable and in the second rule [SCH].

3. In this case rule [END-SA] is applicable.

2
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Lemma 11 Let α = 〈f = v, p = w, σ, O1 · · · Om〉A be an artifact instance,
and let Σ  α = 〈f = v, p = w, σ, O1 · · · Om〉A ok for some Σ, and `
artifact A{U f; V p; Op Step} ok. Then, for all i, 1 ≤ i ≤ m we have
that Oi contains only (sub)expressions in EA ∪ EX, identifiers in f or p, i.e.,
R does not contain variables, or (sensor) identifiers, or expressions in EG;

Proof: From Σ  α = 〈f = v, p = w, σ, O1 · · · Om〉A ok we have that, for
all i, 1 ≤ i ≤ m, Σ  Oi ok in A. Observe that the typing rules of Figure 4
and 6 are such that only expressions in EA ∪ EX are allowed in operations or
steps. The rule for artifact creation, [ART] of Figure 8, does not generate
any expression, and the reduction rules of Figure 11 replace expressions in
EA ∪ EX with values. Finally the rules for state change of artifacts of Figure
12 are such that only expressions in EA ∪ EX and not containing variables are
inserted in the artifact instance. 2

Lemma 12 Let I be α = 〈f = v, p = w, σ, O1 · · · Om〉A, a non-idle ar-
tifact instance, i.e. m > 0, and let Σ  I ok for some Σ, and `
artifact A{U f; V p; Op Step} ok. Then

1. there is O, and rdx ∈ XX ∪ XA such that I is α = 〈f = v, p =
w, σ, O O[[rdx]]〉A. Moreover, if rdx 6= .f, and rdx 6= .p, I is

α = 〈f = v, p = w, σ, O (σ, o(v)[St]〈tr〉{E [[rdx]]})〉A

for some v, σ, o, St, E, or

2. I is α = 〈f = v, p = w, σ, O (σ, o(v)[St1 · · · Stn]〈tr〉{v})〉A, n ≥ 0, for
some v, σ, o, St, or

3. I is α = 〈f = v, p = w, σ, O (σ, o(v)[St]〈fls〉{e})〉A for some v, σ, o,
e, E, or

4. I is α = 〈f = v, p = w, σ, O (σ, o[o(v)〈fls〉 o′(v′)〈tr〉 St])〉A for
some v′, σ, o, o′, o(v)〈fls〉, o, St, or

5. I is α = 〈f = v, p = w, σ, O (σ, o[o1(v
1)〈fls〉 · · · on(vn)〈fls〉])〉A for

some vi, oi,(1 ≤ i ≤ n), σ, o.

Proof: Let I be α = 〈f = v, p = w, σ, O1 · · · Om〉A, a non-idle artifact
instance. Then I is α = 〈f = v, p = w, σ, O O〉A, where O is

(a) (σ, o(v)[St1 · · · Stp]〈e1〉{e2}), or
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(b) (σ, o[o1(v
1)〈e1〉 · · · oq(vq)〈eq〉]), p ≥ 0, and q ≥ 1

Consider case (a).
Assume first that e1 = v for some v. Since Σ  I ok, from the typing rule
for operations of Figure 14 we have that Σ  v : Bool in A. From Lemma 9,
then v = tr or v = fls. If v = fls, then 3. holds. If v = tr and e2 = v′

for some v′. Then 2. holds. Otherwise, from Lemma 1 there is a (unique)
expression evaluation context, E , and redex, rdx, such that e2 = E [[rdx]].
From Lemma 11 rdx ∈ XX∪XA. Define O to be (σ, o(v)[St1 · · · Stp]〈tr〉{E}),
1. holds.
Assume that e1 is not a value. From Lemma 1 there is a (unique) expression
evaluation context, E , and redex, rdx, such that e1 = E [[rdx]]. From Lemma
11 rdx ∈ XX ∪ XA. Define O to be (σ, o(v)[St1 · · · Stp]〈E〉{e2}). We have
that OO[[rdx]]. From Σ  I ok we also have that rdx is side effect free and
therefore may only be either .f, or .p. Therefore, 1. holds.
Consider case (b).

Let assume first (σ, o[o1(v
1)〈v1〉 · · · oq(vq)〈vq〉]). First, note that, since

Σ  I ok, from the typing rule for steps of Figure 14 we have that
Σ  vi : Bool in A, 1 ≤ i ≤ q. From Lemma 9, then vi = tr or vi = fls.
Therefore, either 4. or 5. holds (depending on the facts that the guards are
all fls or there is a tr and so a first one).
Assume that (σ, o[o1(v1)〈v1〉 · · · oj(vj)〈ej〉 · · · oq(vq)〈eq〉]), and ej is the first
guard which is not a value. From Lemma 1 there is a (unique) expression eval-
uation context, E , and redex, rdx, such that ej = E [[rdx]]. From the previous
point we can assume that all the vk, 1 ≤ k ≤ j−1 are such that vk = fls. De-
fine the evaluation context O to be (σ, o[o(v)〈fls〉 oj(v

j)〈E〉 · · · oq(vq)〈eq〉]).
From the typing rule for steps of Figure 14 we have that rdx is side effect
free and therefore may only be either .f, or .p. Therefore, 1. holds. 2

Lemma 13 (Non-idle artifact progress lemma) Let ` M ok, M = I1 |
· · · | In and (for some k ∈ 1..n) Ik is a non-idle artifact α = 〈f = v, p =
w, σ, O1 · · · Om〉A. Then M⇒ M′ for some M′.

Proof: Let Ik be α = 〈f = v, p = w, σ, O1 · · · Om〉A. Let typeEnv(M) = Σ.
From ` M ok we have that Σ  Ik ok. Since we are assuming a well-typed
program, ` artifact A{U f; V p; Op Step} ok. From Lemma 11 we have
that

1. there is O, and rdx ∈ XX ∪ XA such that I is α = 〈f = v, p =
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w, σ, O O[[rdx]]〉A. Moreover, if rdx 6= .f, and rdx 6= .p, I is

α = 〈f = v, p = w, σ, O (σ, o(v)[St]〈tr〉{E [[rdx]]})〉A

for some v, σ, o, St, E , or

2. I is α = 〈f = v, p = w, σ, O (σ, o(v)[St1 · · · Stn]〈tr〉{v})〉A, n ≥ 0, for
some v, σ, o, St, or

3. I is α = 〈f = v, p = w, σ, O (σ, o(v)[St]〈fls〉{e})〉A for some v, σ, o, e,
E , or

4. I is α = 〈f = v, p = w, σ, O (σ, o[o(v)〈fls〉 o′(v′)〈tr〉 St])〉A for some
v′, σ, o, o′, o(v)〈fls〉, o, St, or

5. I is α = 〈f = v, p = w, σ, O (σ, o[o1(v
1)〈fls〉 · · · on(vn)〈fls〉])〉A for

some vi, oi,(1 ≤ i ≤ n), σ, o.

Consider the five cases.

1. By cases on the redex rdx ∈ XA ∪ XX.
If rdx = spawn G(v) or rdx = make A(v), is like the corresponding cases
of Lemma 10.
If rdx = .f, from the typing rule [TfieldR] of Figure 4 we have that
f ∈ f. Therefore, rule [GET] is applicable.
If rdx = .p, from the typing rule [TpropR] of Figure 4 we have that
p ∈ p. Therefore, rule [GETPR] is applicable.
For all the other redexes,

α = 〈f = v, p = w, σ, O (σ, o(v)[St]〈tr〉{E [[rdx]]})〉A

for some v, σ, o, St, E . If rdx = .f = v, and rdx = .p = v, similar to
the [GET] and [GETPR] cases.
If rdx = signal(l(v)), since the configuration is well-typed, from the
rules in Figure 14 the sensors in σ and σ are defined, therefore [GEN]is
applicable.
If rdx = next o(v), from the typing rule [Tnext] of Figure 4 we have
that step o(U x) · · · ∈ A, therefore rule [NEXT] is applicable.

2. If n > 0 rule [SELG] is applicable, and for n = 0 [END] is applicable.

3. Rule [FLS] is applicable.



Standard Type Soundness for Agents and Artifacts 319

4. Rule [SGO] is applicable.

5. Rule [SKIP] is applicable.

2

Proof of Theorem 2 (Progress):

By Lemmas 10 and 13.
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