7,887 research outputs found
Through a glass darkly: a case for the study of virtual space
This paper begins to examine the similarities and differences between virtual space and real space, as taken from anarchitectural (as opposed to a biological, psychological, geographic, philosophical or information theoretic)standpoint. It continues by introducing a number of criteria, suggested by the authors as being necessary for virtualspace to be used in a manner consistent with our experience of real space. Finally, it concludes by suggesting apedagogical framework for the benefits and associated learning outcomes of the study and examination of thisrelationship. This is accompanied by examples of recent student work, which set out to investigate this relationship
Synchronized pulse control of decoherence
We present a new strategy for multipulse control over decoherence. When a
two-level system interacts with a reservoir characterized by a specific
frequency, we find that the decoherence is effectively suppressed by
synchronizing the pulse-train application with the dynamical motion of the
reservoir.Comment: 14 pages, 8 figure
Recommended from our members
Single-shot optical conductivity measurement of dense aluminum plasmas
The optical conductivity of a dense femtosecond laser-heated aluminum plasma heated to 0.1-1.5 eV was measured using frequency-domain interferometry with chirped pulses, permitting simultaneous observation of optical probe reflectivity and probe pulse phase shift. Coupled with published models of bound-electron contributions to the conductivity, these two independent experimental data yielded a direct measurement of both real and imaginary components of the plasma conductivity.DOE National Nuclear Security Administration DE-FC52-03NA00156Physic
Decoherence Rates in Large Scale Quantum Computers and Macroscopic Systems
Markovian regime decoherence effects in quantum computers are studied in
terms of the fidelity for the situation where the number of qubits N becomes
large. A general expression giving the decoherence time scale in terms of
Markovian relaxation elements and expectation values of products of system
fluctuation operators is obtained, which could also be applied to study
decoherence in other macroscopic systems such as Bose condensates and
superconductors. A standard circuit model quantum computer involving
three-state lambda system ionic qubits is considered, with qubits localised
around well-separated positions via trapping potentials. The centre of mass
vibrations of the qubits act as a reservoir. Coherent one and two qubit gating
processes are controlled by time dependent localised classical electromagnetic
fields that address specific qubits, the two qubit gating processes being
facilitated by a cavity mode ancilla, which permits state interchange between
qubits. With a suitable choice of parameters, it is found that the decoherence
time can be made essentially independent of N.Comment: Minor revisions. To be published in J Mod Opt. One figur
The rodent research animal holding facility as a barrier to environmental contamination
The rodent Research Animal Holding Facility (RAHF), developed by NASA Ames Research Center (ARC) to separately house rodents in a Spacelab, was verified as a barrier to environmental contaminants during a 12-day biocompatibility test. Environmental contaminants considered were solid particulates, microorganisms, ammonia, and typical animal odors. The 12-day test conducted in August 1988 was designed to verify that the rodent RAHF system would adequately support and maintain animal specimens during normal system operations. Additional objectives of this test were to demonstrate that: (1) the system would capture typical particulate debris produced by the animal; (2) microorganisms would be contained; and (3) the passage of animal odors was adequately controlled. In addition, the amount of carbon dioxide exhausted by the RAHF system was to be quantified. Of primary importance during the test was the demonstration that the RAHF would contain particles greater than 150 micrometers. This was verified after analyzing collection plates placed under exhaust air ducts and rodent cages during cage maintenance operations, e.g., waste tray and feeder changeouts. Microbiological testing identified no additional organisms in the test environment that could be traced to the RAHF. Odor containment was demonstrated to be less than barely detectable. Ammonia could not be detected in the exhaust air from the RAHF system. Carbon dioxide levels were verified to be less than 0.35 percent
Identifying sequence variation in cation channel sperm associated genes in Cape mountain zebra (Equus zebra zebra)
The Cape mountain zebra (Equus zebra zebra) has recovered from near extinction over more than eight decades. While their numbers have increased, populations remain isolated with low genetic diversity. With more than 75 new populations being founded and more than 4800 extant animals, conservation management strategies are being implemented to mitigate risk of losses in genetic diversity and reproductive fitness. One objective is to identify reproductive characteristics that may improve population growth. Cation channel sperm (CatSper) genes play an important role in hyperactivation of sperm during fertilization. Mutations in these genes lead to reduced fertility and even infertility. Ten male zebras were sampled from a group that were translocated in 2016 in order to found a new population. Single nucleotide polymorphisms (SNPs) were identified in three of the CatSper genes (1 - 3). Lack of variation was observed in all exons, with only four SNPs being identified in the intronic regions in close proximity to exons 1, 2, 7, 8, and 9 of CatSper 1. These results may contribute to the pre-identification of males for new founder populations to ensure population growth and viability, and may be a useful tool for selection against low-producing individuals
- …