77 research outputs found
Recommended from our members
Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration
Injection and movement/saturation of carbon dioxide (CO2) in a geological formation will cause changes in seismic velocities. We investigate the capability of coda-wave interferometry technique for estimating CO2-induced seismic velocity changes using time-lapse synthetic vertical seismic profiling (VSP) data and the field VSP datasets acquired for monitoring injected CO2 in a brine aquifer in Texas, USA. Synthetic VSP data are calculated using a finite-difference elastic-wave equation scheme and a layered model based on the elastic Marmousi model. A possible leakage scenario is simulated by introducing seismic velocity changes in a layer above the CO2 injection layer. We find that the leakage can be detected by the detection of a difference in seismograms recorded after the injection compared to those recorded before the injection at an earlier time in the seismogram than would be expected if there was no leakage. The absolute values of estimated mean velocity changes, from both synthetic and field VSP data, increase significantly for receiver positions approaching the top of a CO2 reservoir. Our results from field data suggest that the velocity changes caused by CO2 injection could be more than 10% and are consistent with results from a crosswell tomogram study. This study demonstrates that time-lapse VSP with coda-wave interferometry analysis can reliably and effectively monitor geological carbon sequestration
Cluster Interpretation of Properties of Alternating Parity Bands in Heavy Nuclei
The properties of the states of the alternating parity bands in actinides,
Ba, Ce and Nd isotopes are analyzed within a cluster model. The model is based
on the assumption that cluster type shapes are produced by the collective
motion of the nuclear system in the mass asymmetry coordinate. The calculated
spin dependences of the parity splitting and of the electric multipole
transition moments are in agreement with the experimental data.Comment: 29 pages, 10 figure
Knudsen gas in a finite random tube: transport diffusion and first passage properties
We consider transport diffusion in a stochastic billiard in a random tube
which is elongated in the direction of the first coordinate (the tube axis).
Inside the random tube, which is stationary and ergodic, non-interacting
particles move straight with constant speed. Upon hitting the tube walls, they
are reflected randomly, according to the cosine law: the density of the
outgoing direction is proportional to the cosine of the angle between this
direction and the normal vector. Steady state transport is studied by
introducing an open tube segment as follows: We cut out a large finite segment
of the tube with segment boundaries perpendicular to the tube axis. Particles
which leave this piece through the segment boundaries disappear from the
system. Through stationary injection of particles at one boundary of the
segment a steady state with non-vanishing stationary particle current is
maintained. We prove (i) that in the thermodynamic limit of an infinite open
piece the coarse-grained density profile inside the segment is linear, and (ii)
that the transport diffusion coefficient obtained from the ratio of stationary
current and effective boundary density gradient equals the diffusion
coefficient of a tagged particle in an infinite tube. Thus we prove Fick's law
and equality of transport diffusion and self-diffusion coefficients for quite
generic rough (random) tubes. We also study some properties of the crossing
time and compute the Milne extrapolation length in dependence on the shape of
the random tube.Comment: 51 pages, 3 figure
Mass calibration of DES Year-3 clusters via SPT-3G CMB cluster lensing
We measure the stacked lensing signal in the direction of galaxy clusters in the Dark Energy Survey Year 3 (DES Y3) redMaPPer sample, using cosmic microwave background (CMB) temperature data from SPT-3G, the third-generation CMB camera on the South Pole Telescope (SPT). Here, we estimate the lensing signal using temperature maps constructed from the initial 2 years of data from the SPT-3G 'Main' survey, covering 1500 deg2 of the Southern sky. We then use this lensing signal as a proxy for the mean cluster mass of the DES sample. The thermal Sunyaev-Zel'dovich (tSZ) signal, which can contaminate the lensing signal if not addressed, is isolated and removed from the data before obtaining the mass measurement. In this work, we employ three versions of the redMaPPer catalogue: a Flux-Limited sample containing 8865 clusters, a Volume-Limited sample with 5391 clusters, and a Volume&Redshift-Limited sample with 4450 clusters. For the three samples, we detect the CMB lensing signal at a significance of 12.4σ, 10.5σ and 10.2σ and find the mean cluster masses to be M 200m = 1.66±0.13 [stat.]± 0.03 [sys.], 1.97±0.18 [stat.]± 0.05 [sys.], and 2.11±0.20 [stat.]± 0.05 [sys.]×1014 M⊙, respectively. This is a factor of ∼ 2 improvement relative to the precision of measurements with previous generations of SPT surveys and the most constraining cluster mass measurements using CMB cluster lensing to date. Overall, we find no significant tensions between our results and masses given by redMaPPer mass-richness scaling relations of previous works, which were calibrated using CMB cluster lensing, optical weak lensing, and velocity dispersion measurements from various combinations of DES, SDSS and Planck data. We then divide our sample into 3 redshift and 3 richness bins, finding no significant discrepancies with optical weak-lensing calibrated masses in these bins. We forecast a 5.7% constraint on the mean cluster mass of the DES Y3 sample with the complete SPT-3G surveys when using both temperature and polarization data and including an additional ∼ 1400 deg2 of observations from the 'Extended' SPT-3G survey
Recommended from our members
Measurement of Fracture-Induced Anisotropy in Shear-Wave Attenuation and Velocity from VSP Data
- …