7 research outputs found
Genetic variations in olfactory receptor gene OR2AG2 in a large multigenerational family with asthma
It is estimated from twin studies that heritable factors account for at-least half of asthma-risk, of which genetic variants identified through population studies explain only a small fraction. Multi-generation large families with high asthma prevalence can serve as a model to identify highly penetrant genetic variants in closely related individuals that are missed by population studies. To achieve this, a four-generation Indian family with asthma was identified and recruited for examination and genetic testing. Twenty subjects representing all generations were selected for whole genome genotyping, of which eight were subjected to exome sequencing. Non-synonymous and deleterious variants, segregating with the affected individuals, were identified by exome sequencing. A prioritized deleterious missense common variant in the olfactory receptor gene OR2AG2 that segregated with a risk haplotype in asthma, was validated in an asthma cohort of different ethnicity. Phenotypic tests were conducted to verify expected deficits in terms of reduced ability to sense odors. Pathway-level relevance to asthma biology was tested in model systems and unrelated human lung samples. Our study suggests that OR2AG2 and other olfactory receptors may contribute to asthma pathophysiology. Genetic studies on large families of interest can lead to efficient discovery
B7h (ICOS-L) maintains tolerance at the fetomaternal interface
In a successful pregnancy, the semiallogeneic fetus is not rejected by the maternal immune system, which implies tolerance mechanisms protecting fetal tissues from maternal immune attack. Here we report that the ICOS-B7h costimulatory pathway plays a critical role in maintaining the equilibrium at the fetomaternal interface. Blockade of this pathway increased fetal resorption and decreased fetal survival in an allogeneic pregnancy model (CBA female
7 B6 male). Locally in the placenta, levels of regulatory markers such as IDO and TGF-\u3b21 were reduced after anti-B7h monoclonal antibody treatment, whereas levels of effector cytokines (eg, IFN-\u3b3) were significantly increased. In secondary lymphoid organs, enhanced IFN-\u3b3 and granzyme B production (predominantly by CD8+ T cells) was observed in the anti-B7h-treated group. The deleterious effect of B7h blockade in pregnancy was maintained only in CD4 knockout mice, not in CD8 knockout mice, which suggests a role for CD8+ T cells in immune regulation by the ICOS-B7h pathway. In accord, regulatory CD8+ T cells (in particular, CD8 +CD103+ cells) were significantly decreased after anti-B7h monoclonal antibody treatment, and adoptive transfer of this subset abrogated the deleterious effect of B7h blockade in fetomaternal tolerance. Taken together, these data support the hypothesis that B7h blockade abrogates tolerance at the fetomaternal interface by enhancing CD8+ effector response and reducing local immunomodulation mediated by CD8+ regulatory T cells. Copyright \ua9 2013 American Society for Investigative Pathology
Whole Exome Sequencing in Healthy Individuals of Extreme Constitution Types Reveals Differential Disease Risk: A Novel Approach towards Predictive Medicine
Precision medicine aims to move from traditional reactive medicine to a system where risk groups can be identified before the disease occurs. However, phenotypic heterogeneity amongst the diseased and healthy poses a major challenge for identification markers for risk stratification and early actionable interventions. In Ayurveda, individuals are phenotypically stratified into seven constitution types based on multisystem phenotypes termed “Prakriti”. It enables the prediction of health and disease trajectories and the selection of health interventions. We hypothesize that exome sequencing in healthy individuals of phenotypically homogeneous Prakriti types might enable the identification of functional variations associated with the constitution types. Exomes of 144 healthy Prakriti stratified individuals and controls from two genetically homogeneous cohorts (north and western India) revealed differential risk for diseases/traits like metabolic disorders, liver diseases, and body and hematological measurements amongst healthy individuals. These SNPs differ significantly from the Indo-European background control as well. Amongst these we highlight novel SNPs rs304447 (IFIT5) and rs941590 (SERPINA10) that could explain differential trajectories for immune response, bleeding or thrombosis. Our method demonstrates the requirement of a relatively smaller sample size for a well powered study. This study highlights the potential of integrating a unique phenotyping approach for the identification of predictive markers and the at-risk population amongst the healthy
Targeting RNA Exonuclease XRN1 Potentiates Efficacy of Cancer Immunotherapy
10.1158/0008-5472.CAN-21-3052Cancer research836922-93
ASXL2 regulates hematopoiesis in mice and its deficiency promotes myeloid expansion
10.3324/haematol.2018.189928Haematologica103121980-199