3,509 research outputs found
Quarkonium studies in p+p and Pb+Pb collisions with CMS
The collisions of Pb nuclei at the LHC will create strongly interacting matter at unprecedented energy densities, allowing us to probe QCD at extreme temperatures and very low parton momentum fractions. This paper presents the capabilities of the CMS experiment to study the production of quarkonium states in and Pb+Pb collisions. The very good acceptance and excellent dimuon mass resolution will allow us to do with the three states (1S, 2S, 3S) the exciting measurements previously performed with the and states, at the SPS and RHIC
Measurement of photons via conversion pairs in \sqrt{s_{NN}} = 200 GeV Au+Au collisions with the PHENIX experiment at RHIC
Thermal photons can provide information on the temperature of the new state
of matter created at RHIC. In the p_T region of 1--3 GeV/c thermal photons are
expected to be the dominant direct photon source. Therefore, a possible excess
compared to a pure decay photon signal due to a thermal photon contribution
should be seen in the double ratio
(\gamma/\gamma(\pi^{0}))_{Measured}/(\gamma/\gamma(\pi^{0}))_{Simulated}, if
sufficient accuracy can be reached. We present a method to reconstruct direct
photons by measuring e^{+}e^{-}--pairs from external photon conversions.Comment: 4 pages, 7 figures. To appear in the proceedings of Hot Quarks 2006:
Workshop for Young Scientists on the Physics of Ultrarelativistic
Nucleus-Nucleus Collisions, Villasimius, Italy, 15-20 May 200
Heavy-flavor dynamics in nucleus-nucleus collisions: from RHIC to LHC
The stochastic dynamics of c and b quarks in the fireball created in
nucleus-nucleus collisions at RHIC and LHC is studied employing a relativistic
Langevin equation, based on a picture of multiple uncorrelated random
collisions with the medium. Heavy-quark transport coefficients are evaluated
within a pQCD approach, with a proper HTL resummation of medium effects for
soft scatterings. The Langevin equation is embedded in a multi-step setup
developed to study heavy-flavor observables in pp and AA collisions, starting
from a NLO pQCD calculation of initial heavy-quark yields, complemented in the
nuclear case by shadowing corrections, k_T-broadening and nuclear geometry
effects. Then, only for AA collisions, the Langevin equation is solved
numerically in a background medium described by relativistic hydrodynamics.
Finally, the propagated heavy quarks are made hadronize and decay into
electrons. Results for the nuclear modification factor R_AA of heavy-flavor
hadrons and electrons from their semi-leptonic decays are provided, both for
RHIC and LHC beam energies.Comment: 4 pages, 2 figures (3 eps files); submitted for publication in the
proceedings of "Quark Matter 2011", 23-28 May 2011, Annecy (France
Direct photons ~basis for characterizing heavy ion collisions~
After years of experimental and theoretical efforts, direct photons become a
strong and reliable tool to establish the basic characteristics of a hot and
dense matter produced in heavy ion collisions. The recent direct photon
measurements are reviewed and a future prospect is given.Comment: 8 pages, 8 figures, Invited plenary talk at Quark Matter 200
Synchronisation in networks of delay-coupled type-I excitable systems
We use a generic model for type-I excitability (known as the SNIPER or SNIC
model) to describe the local dynamics of nodes within a network in the presence
of non-zero coupling delays. Utilising the method of the Master Stability
Function, we investigate the stability of the zero-lag synchronised dynamics of
the network nodes and its dependence on the two coupling parameters, namely the
coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model
for type-II excitability), there are parameter ranges where the stability of
synchronisation depends on the coupling strength and delay time. One important
implication of these results is that there exist complex networks for which the
adding of inhibitory links in a small-world fashion may not only lead to a loss
of stable synchronisation, but may also restabilise synchronisation or
introduce multiple transitions between synchronisation and desynchronisation.
To underline the scope of our results, we show using the Stuart-Landau model
that such multiple transitions do not only occur in excitable systems, but also
in oscillatory ones.Comment: 10 pages, 9 figure
Examining the thermal properties of unirradiated nuclear grade graphite between 750 and 2500 K
This study presents the first high temperature measurements (between 750 K and 2500 K) of thermal conductivity, thermal diffusivity, specific heat and spectral emissivity of virgin graphite samples (type IM1-24) from advanced gas-cooled reactor (AGR) fuel assembly bricks. Scanning electron microscope (SEM) and X-ray computed tomography (XRT) techniques were used to verify the presence of Gilsocarbon filler particles (a characteristic microstructural feature of IM1-24 graphite). All thermal properties were investigated in two orthogonal directions, which showed the effective macroscopic thermal conductivity to be the same (to within experimental error). This can be linked to the morphology of the filler particles that consist of concentrically aligned graphitic platelets. The resulting spherical symmetry allows for heat to flow in the same manner in both macroscopic directions. The current thermal conductivity results were compared to other isotropic grade graphite materials. The significant discrepancies between the thermal conductivities of the individual grades are likely the result of different manufacturing processes yielding variations in the microstructure of the final product. Differences were identified in the filler particle size and structure, and possibly the degree of graphitization compared to other reported nuclear graphites
Dynamics of fully coupled rotators with unimodal and bimodal frequency distribution
We analyze the synchronization transition of a globally coupled network of N
phase oscillators with inertia (rotators) whose natural frequencies are
unimodally or bimodally distributed. In the unimodal case, the system exhibits
a discontinuous hysteretic transition from an incoherent to a partially
synchronized (PS) state. For sufficiently large inertia, the system reveals the
coexistence of a PS state and of a standing wave (SW) solution. In the bimodal
case, the hysteretic synchronization transition involves several states.
Namely, the system becomes coherent passing through traveling waves (TWs), SWs
and finally arriving to a PS regime. The transition to the PS state from the SW
occurs always at the same coupling, independently of the system size, while its
value increases linearly with the inertia. On the other hand the critical
coupling required to observe TWs and SWs increases with N suggesting that in
the thermodynamic limit the transition from incoherence to PS will occur
without any intermediate states. Finally a linear stability analysis reveals
that the system is hysteretic not only at the level of macroscopic indicators,
but also microscopically as verified by measuring the maximal Lyapunov
exponent.Comment: 22 pages, 11 figures, contribution for the book: Control of
Self-Organizing Nonlinear Systems, Springer Series in Energetics, eds E.
Schoell, S.H.L. Klapp, P. Hoeve
Towards net zero CO2 in 2050: an emission reduction pathway for organic soils in Germany
The Paris Agreement reflects the global endeavour to limit the increase of global average temperature to 2 °C, better 1.5 °C above pre-industrial levels to prevent dangerous climate change. This requires that global anthropogenic net carbon dioxide (CO2) emissions are reduced to zero around 2050. The German Climate Protection Plan substantiates this goal and explicitly mentions peatlands, which make up 5 % of the total area under land use and emit 5.7 % of total annual greenhouse gas emissions in Germany. Based on inventory reporting and assumptions of land use change probability, we have developed emission reduction pathways for organic soils in Germany that on a national level comply with the IPCC 1.5 °C pathways. The more gradual pathway 1 requires the following interim (2030, 2040) and ultimate (2050) milestones: Cropland use stopped and all Cropland converted to Grassland by 2030; Water tables raised to the soil surface on 15 % / 60 % / 100 % of all Grassland, on 50 % / 75 % / 100 % of all Forest land, and ultimately on 2/3 of all Settlements and on 100 % of all Wetlands. Also a more direct pathway 2 without interim ‘moist’ water tables and the climate effect (radiative forcing) of different scenarios is presente
- …