1,036 research outputs found

    Time Delay Measurements for the Cluster-lensed Sextuple Quasar SDSS J2222+2745

    Full text link
    We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS\,J2222++2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be τAB=47.7±6.0\tau_{\rm AB} = 47.7 \pm 6.0 days (95\% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of τCA=722±24\tau_{\rm CA} = 722 \pm 24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60-75\% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years.Comment: 9 pages, 9 figures, Version accepted for publication in Ap

    On the lack of correlation between Mg II 2796, 2803 Angstrom and Lyman alpha emission in lensed star-forming galaxies

    Get PDF
    We examine the Mg II 2796, 2803 Angstrom, Lyman alpha, and nebular line emission in five bright star-forming galaxies at 1.66<z<1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyman alpha emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100 to 200 km/s. When present, Lyman alpha is even more redshifted. The reddest components of Mg II and Lyman alpha emission have tails to 500-600 km/s, implying a strong outflow. The lack of correlation in the Mg II and Lyman alpha equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.Comment: The Astrophysical Journal, in press. 6 pages, 2 figure

    Galaxy-Galaxy Lensing in the Hubble Deep Field: The Halo Tully-Fisher Relation at Intermediate Redshift

    Full text link
    A tangential distortion of background source galaxies around foreground lens galaxies in the Hubble Deep Field is detected at the 99.3% confidence level. An important element of our analysis is the use of photometric redshifts to determine distances of lens and source galaxies and rest-frame B-band luminosities of the lens galaxies. The lens galaxy halos obey a Tully-Fisher relation between halo circular velocity and luminosity; the typical lens galaxy, at a redshift z = 0.6, has a circular velocity of 210 +/-40 km/s at M_B = -18.5, if q_0 = 0.5. Control tests, in which lens and source positions and source ellipticities are randomized, confirm the significance level of the detection quoted above. Furthermore, a marginal signal is also detected from an independent, fainter sample of source galaxies without photometric redshifts. Potential systematic effects, such as contamination by aligned satellite galaxies, the distortion of source shapes by the light of the foreground galaxies, PSF anisotropies, and contributions from mass distributed on the scale of galaxy groups are shown to be negligible. A comparison of our result with the local Tully-Fisher relation indicates that intermediate-redshift galaxies are fainter than local spirals by 1.0 +/- 0.6 B mag at a fixed circular velocity. This is consistent with some spectroscopic studies of the rotation curves of intermediate-redshift galaxies. This result suggests that the strong increase in the global luminosity density with redshift is dominated by evolution in the galaxy number density.Comment: Revised version with minor changes. 13 pages, 7 figures, LaTeX2e, uses emulateapj and multicol styles (included). Accepted by Ap

    Searching for Cooling Signatures in Strong Lensing Galaxy Clusters: Evidence Against Baryons Shaping the Matter Distribution in Cluster Cores

    Full text link
    The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intra-cluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of strong lensing selected galaxy clusters in the range 0.1 < z < 0.6. Based on known correlations between the ICM cooling rate and both optical emission line luminosity and star formation, we measure, for a sample of 89 strong lensing clusters, the fraction of clusters that have [OII]3727 emission in their brightest cluster galaxy (BCG). We find that the fraction of line-emitting BCGs is constant as a function of redshift for z > 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 angstrom break, D_4000, are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R_arc, between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [OII] emission and D_4000 as a function of R_arc, a proxy observable for SL cross-sections. D_4000 is constant with all values of R_arc, and the [OII] emission fractions show no dependence on R_arc for R_arc > 10" and only very marginal evidence of increased weak [OII] emission for systems with R_arc < 10". These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in strong lensing cross-sections.Comment: 9 Pages, 5 Figures, 1 Tabl

    Constraining the metallicities, ages, star formation histories, and ionizing continua of extragalactic massive star populations

    Full text link
    We infer the properties of massive star populations using the far-ultraviolet stellar continua of 61 star-forming galaxies: 42 at low-z observed with HST and 19 at z~2 from the Megasaura sample. We fit each stellar continuum with a linear combination of up to 50 single age and single metallicity Starburst99 models. From these fits, we derive light-weighted ages and metallicities, which agree with stellar wind and photospheric spectral features, and infer the spectral shapes and strengths of the ionizing continua. Inferred light-weighted stellar metallicities span 0.05-1.5 Z⊙_\odot and are similar to the measured nebular metallicities. We quantify the ionizing continua using the ratio of the ionizing flux at 900\AA\ to the non-ionizing flux at 1500\AA\ and demonstrate the evolution of this ratio with stellar age and metallicity using theoretical single burst models. These single burst models only match the inferred ionizing continua of half of the sample, while the other half are described by a mixture of stellar ages. Mixed age populations produce stronger and harder ionizing spectra than continuous star formation histories, but, contrary to previous studies that assume constant star formation, have similar stellar and nebular metallicities. Stellar population age and metallicity affect the far-UV continua in different and distinguishable ways; assuming a constant star formation history diminishes the diagnostic power. Finally, we provide simple prescriptions to determine the ionizing photon production efficiency (ξion\xi_{ion}) from the stellar population properties. ξion\xi_{ion} has a range of log(ξion)=24.4−25.7\xi_{ion})=24.4-25.7 Hz erg−1^{-1} that depends on stellar age, metallicity, star formation history, and contributions from binary star evolution. These stellar population properties must be observationally determined to determine the number of ionizing photons generated by massive stars.Comment: 31 pages, 23 figures, resubmitted to ApJ after incorporating the referee's comments. Comments encourage

    The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MEGaSaURA) I: The Sample and the Spectra

    Full text link
    We introduce Project MEGaSaURA: The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas. MEGaSaURA comprises medium-resolution, rest-frame ultraviolet spectroscopy of N=15 bright gravitationally lensed galaxies at redshifts of 1.68<<z<<3.6, obtained with the MagE spectrograph on the Magellan telescopes. The spectra cover the observed-frame wavelength range 3200<λo<82803200 < \lambda_o < 8280 \AA ; the average spectral resolving power is R=3300. The median spectrum has a signal-to-noise ratio of SNR=21SNR=21 per resolution element at 5000 \AA . As such, the MEGaSaURA spectra have superior signal-to-noise-ratio and wavelength coverage compared to what COS/HST provides for starburst galaxies in the local universe. This paper describes the sample, the observations, and the data reduction. We compare the measured redshifts for the stars, the ionized gas as traced by nebular lines, and the neutral gas as traced by absorption lines; we find the expected bulk outflow of the neutral gas, and no systemic offset between the redshifts measured from nebular lines and the redshifts measured from the stellar continuum. We provide the MEGaSaURA spectra to the astronomical community through a data release.Comment: Resubmitted to AAS Journals. Data release will accompany journal publication. v2 addresses minor comments from refere

    Accurately predicting the escape fraction of ionizing photons using restframe ultraviolet absorption lines

    Get PDF
    The fraction of ionizing photons that escape high-redshift galaxies sensitively determines whether galaxies reionized the early universe. However, this escape fraction cannot be measured from high-redshift galaxies because the opacity of the intergalactic medium is large at high redshifts. Without methods to indirectly measure the escape fraction of high-redshift galaxies, it is unlikely that we will know what reionized the universe. Here, we analyze the far-ultraviolet (UV) H I (Lyman series) and low-ionization metal absorption lines of nine low-redshift, confirmed Lyman continuum emitting galaxies. We use the H I covering fractions, column densities, and dust attenuations measured in a companion paper to predict the escape fraction of ionizing photons. We find good agreement between the predicted and observed Lyman continuum escape fractions (within 1.4σ1.4\sigma) using both the H I and ISM absorption lines. The ionizing photons escape through holes in the H I, but we show that dust attenuation reduces the fraction of photons that escape galaxies. This means that the average high-redshift galaxy likely emits more ionizing photons than low-redshift galaxies. Two other indirect methods accurately predict the escape fractions: the Lyα\alpha escape fraction and the optical [O III]/[O II] flux ratio. We use these indirect methods to predict the escape fraction of a sample of 21 galaxies with rest-frame UV spectra but without Lyman continuum observations. Many of these galaxies have low escape fractions (fesc≤1f_{\rm esc} \le 1\%), but 11 have escape fractions >1>1\%. The methods presented here will measure the escape fractions of high-redshift galaxies, enabling future telescopes to determine whether star-forming galaxies reionized the early universe.Comment: Accepted for publication in A&A. 12 pages, 5 figure

    The Mass Distribution of the Strong Lensing Cluster SDSS J1531+3414

    Full text link
    We present the mass distribution at the core of SDSS J1531+3414, a strong-lensing cluster at z=0.335. We find that the mass distribution is well described by two cluster-scale halos with a contribution from cluster-member galaxies. New HST observations of SDSS J1531+3414 reveal a signature of ongoing star formation associated with the two central galaxies at the core of the cluster, in the form of a chain of star forming regions at the center of the cluster. Using the lens model presented here, we place upper limits on the contribution of a possible lensed image to the flux at the center region, and rule out that this emission is coming from a background source.Comment: 8 pages, 5 figures; Submitted to Ap

    The Radio Afterglow and Host Galaxy of the Dark GRB 020819

    Full text link
    Of the fourteen gamma-ray bursts (GRBs) localized to better than 2' radius with the SXC on HETE-2, only two lack optical afterglow detections, and the high recovery rate among this sample has been used to argue that the fraction of truly dark bursts is ~10%. While a large fraction of earlier dark bursts can be explained by the failure of ground-based searches to reach appropriate limiting magnitudes, suppression of the optical light of these SXC dark bursts seems likely. Here we report the discovery and observation of the radio afterglow of GRB 020819, an SXC dark burst, which enables us to identify the likely host galaxy (probability of 99.2%) and hence the redshift (z=0.41) of the GRB. The radio light curve is qualitatively similar to that of several other radio afterglows, and may include an early-time contribution from the emission of the reverse shock. The proposed host is a bright R = 19.5 mag barred spiral galaxy, with a faint R ~ 24.0 mag "blob'' of emission, 3" from the galaxy core (16 kpc in projection), that is coincident with the radio afterglow. Optical photometry of the galaxy and blob, beginning 3 hours after the burst and extending over more than 100 days, establishes strong upper limits to the optical brightness of any afterglow or associated supernova. Combining the afterglow radio fluxes and our earliest R-band limit, we find that the most likely afterglow model invokes a spherical expansion into a constant-density (rather than stellar wind-like) external environment; within the context of this model, a modest local extinction of A_V ~ 1 mag is sufficient to suppress the optical flux below our limits.Comment: 7 pages, 2 figures. ApJ, in press. For more info on dark bursts, see http://www.astro.ku.dk/~pallja/dark.htm

    Chandra Measurements of a Complete Sample of X-ray Luminous Galaxy Clusters: The Luminosity-Mass Relation

    Get PDF
    We present the results of work involving a statistically complete sample of 34 galaxy clusters, in the redshift range 0.15≤\lez≤\le0.3 observed with ChandraChandra. We investigate the luminosity-mass (LMLM) relation for the cluster sample, with the masses obtained via a full hydrostatic mass analysis. We utilise a method to fully account for selection biases when modeling the LMLM relation, and find that the LMLM relation is significantly different than the relation modelled when not account for selection effects. We find that the luminosity of our clusters is 2.2±\pm0.4 times higher (when accounting for selection effects) than the average for a given mass, its mass is 30% lower than the population average for a given luminosity. Equivalently, using the LMLM relation measured from this sample without correcting for selection biases would lead to the underestimation by 40% of the average mass of a cluster with a given luminosity. Comparing the hydrostatic masses to mass estimates determined from the YXY_{X} parameter, we find that they are entirely consistent, irrespective of the dynamical state of the cluster.Comment: 31 pages, 43 figures, accepted for publication in MNRA
    • …
    corecore