4,993 research outputs found

    Lysosomal acid lipase in mesenchymal stem cell stimulation of tumor growth and metastasis

    Get PDF
    Bone marrow mesenchymal stem cells (MSCs) are an important participant in the tumor microenvironment, in which they promote tumor growth and progression. Here we report for the first time that depletion of lysosomal acid lipase (LAL) in MSCs impairs their abilities to stimulate tumor growth and metastasis both in allogeneic and syngeneic mouse models. Reduced cell viability was observed in LAL-deficient (lal-/-) MSCs, which was a result of both increased apoptosis and decreased proliferation due to cell cycle arrest. The synthesis and secretion of cytokines and chemokines that are known to mediate MSCs' tumor-stimulating and immunosuppressive effects, i.e., IL-6, MCP-1 and IL-10, were down-regulated in lal-/- MSCs. When tumor cells were treated with the conditioned medium from lal-/- MSCs, decreased proliferation was observed, accompanied by reduced activation of oncogenic intracellular signaling molecules in tumor cells. Co-injection of lal-/- MSCs and B16 melanoma cells into wild type mice not only induced CD8+ cytotoxic T cells, but also decreased accumulation of tumor-promoting Ly6G+CD11b+ myeloid-derived suppressor cells (MDSCs), which may synergistically contribute to the impairment of tumor progression. Furthermore, lal-/- MSCs showed impaired differentiation towards tumor-associated fibroblasts. In addition, MDSCs facilitated MSC proliferation, which was mediated by MDSC-secreted cytokines and chemokines. Our results indicate that LAL plays a critical role in regulating MSCs' ability to stimulate tumor growth and metastasis, which provides a mechanistic basis for targeting LAL in MSCs to reduce the risk of cancer metastasis

    Lysosomal acid lipase in cancer

    Get PDF

    Metabolic reprogramming of myeloid-derived suppressive cells

    Get PDF

    Myeloid-specific expression of Stat3C results in conversion of bone marrow mesenchymal stem cells into alveolar type II epithelial cells in the lung

    Get PDF
    Bone marrow mesenchymal stem cells (BMSCs) and myeloid lineage cells originate from the bone marrow, and influence each other in vivo. To elucidate the mechanism that controls the interrelationship between these two cell types, the signaling pathway of signal transducer and activator of transcription 3 (Stat3) was activated by overexpressing Stat3C in a newly established c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mouse model. In this system, Stat3C-Flag fusion protein was overexpressed in myeloid lineage cells after doxycycline treatment. Stat3C overexpression induced systematic elevation of macrophages and neutrophils in multiple organs. In the lung, tissue neoplastic pneumocyte proliferation was observed. After in vitro cultured hSP-B 1.5-kb lacZ BMSCs were injected into the bitransgenic mice, BMSCs were able to repopulate in multiple organs, self-renew in the bone marrow and spleen, and convert into alveolar type II epithelial cells. The bone marrow transplantation study indicated that increases of myeloid lineage cells and BMSC-AT II cell conversion were due to malfunction of myeloid progenitor cells as a result of Stat3C overexpression. The study supports the concept that activation of the Stat3 pathway in myeloid cells plays an important role in BMSC function, including homing, repopulating and converting into residential AT II epithelial cells in the lung

    Establishment of lal-/- myeloid lineage cell line that resembles myeloid-derived suppressive cells

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) in mouse are inflammatory cells that play critical roles in promoting cancer growth and metastasis by directly stimulating cancer cell proliferation and suppressing immune surveillance. In order to facilitate characterization of biochemical and cellular mechanisms of MDSCs, it is urgent to establish an "MDSC-like" cell line. By cross breeding of immortomouse (simian virus 40 large T antigen transgenic mice) with wild type and lysosomal acid lipase (LAL) knock-out (lal-/-) mice, we have established a wild type (HD1A) and a lal-/- (HD1B) myeloid cell lines. Compared with HD1A cells, HD1B cells demonstrated many characteristics similar to lal-/- MDSCs. HD1B cells exhibited increased lysosomes around perinuclear areas, dysfunction of mitochondria skewing toward fission structure, damaged membrane potential, and increased ROS production. HD1B cells showed increased glycolytic metabolism during blockage of fatty acid metabolism to fuel the energy need. Similar to lal-/- MDSCs, the mTOR signal pathway in HD1B cells is overly activated. Rapamycin treatment of HD1B cells reduced ROS production and restored the mitochondrial membrane potential. HD1B cells showed much stronger immunosuppression on CD4+ T cell proliferation and function in vitro, and enhanced cancer cells proliferation. Knockdown of mTOR with siRNA reduced the HD1B cell ability to immunosuppress T cells and stimulate cancer cell proliferation. Therefore, the HD1B myeloid cell line is an "MDSC-like" cell line that can be used as an alternative in vitro system to study how LAL controls various myeloid cell functions

    Myeloid-derived suppressor cells are involved in lysosomal acid lipase deficiency-induced endothelial cell dysfunctions

    Get PDF
    The underlying mechanisms that lysosomal acid lipase (LAL) deficiency causes infiltration of myeloid-derived suppressor cells (MDSCs) in multiple organs and subsequent inflammation remain incompletely understood. Endothelial cells (ECs), lining the inner layer of blood vessels, constitute barriers regulating leukocytes transmigration to the site of inflammation. Therefore, we hypothesized that ECs are dysfunctional in LAL-deficient (lal(-/-)) mice. We found that Ly6G(+) cells transmigrated more efficiently across lal(-/-) ECs than wild-type (lal(+/+)) ECs, which were associated with increased levels of PECAM-1 and MCP-1 in lal(-/-) ECs. In addition, lal(-/-) ECs showed enhanced migration and proliferation, decreased apoptosis, but impaired tube formation and angiogenesis. lal(-/-) ECs also suppressed T cell proliferation in vitro. Interestingly, lal(-/-) Ly6G(+) cells promoted in vivo angiogenesis (including a tumor model), EC tube formation, and proliferation. Finally, the mammalian target of rapamycin (mTOR) pathway was activated in lal(-/-) ECs, and inhibition of mTOR reversed EC dysfunctions, including decreasing Ly6G(+) cell transmigration, delaying migration, and relieving suppression of T cell proliferation, which was mediated by decreasing production of reactive oxygen species. Our results indicate that LAL regulates EC functions through interaction with MDSCs and modulation of the mTOR pathway, which may provide a mechanistic basis for targeting MDSCs or mTOR to rejuvenate EC functions in LAL deficiency-related diseases

    Endothelial Rab7 GTPase mediates tumor growth and metastasis in lysosomal acid lipase-deficient mice

    Get PDF
    Tumors depend on their microenvironment for sustained growth, invasion, and metastasis. In this environment, endothelial cells (ECs) are an important stromal cell type interacting with malignant cells to facilitate tumor angiogenesis and cancer cell extravasation. Of note, lysosomal acid lipase (LAL) deficiency facilitates melanoma growth and metastasis. ECs from LAL-deficient (lal-/-) mice possess enhanced proliferation, migration, and permeability of inflammatory cells by activating the mammalian target of rapamycin (mTOR) pathway. Here we report that lal-/- ECs facilitated in vivo tumor angiogenesis, growth, and metastasis, largely by stimulating tumor cell proliferation, migration, adhesion, and transendothelial migration via increased expression of IL-6 and monocyte chemoattractant protein 1 (MCP-1). This prompted us to look for lysosomal proteins that are involved in lal-/- EC dysfunctions. We found that lal-/- ECs displayed increased expression of Rab7, a late endosome/lysosome-associated small GTPase. Moreover, Rab7 and mTOR were co-increased and co-localized to lysosomes and physically interacted in lal-/- ECs. Rab7 inhibition reversed lal-/- EC dysfunctions, including decreasing their enhanced migration and permeability of tumor-stimulatory myeloid cells, and suppressed EC-mediated stimulation of in vitro tumor cell transmigration, proliferation, and migration and in vivo tumor growth and metastasis. Finally, Rab7 inhibition reduced overproduction of reactive oxygen species and increased IL-6 and MCP-1 secretion in lal-/- ECs. Our results indicate that metabolic reprogramming resulting from LAL deficiency enhances the ability of ECs to stimulate tumor cell proliferation and metastasis through stimulation of lysosome-anchored Rab7 activity

    Transthyretin Stimulates Tumor Growth through Regulation of Tumor, Immune, and Endothelial Cells

    Get PDF
    Early detection of lung cancer offers an important opportunity to decrease mortality while it is still treatable and curable. Thirteen secretory proteins that are Stat3 downstream gene products were identified as a panel of biomarkers for lung cancer detection in human sera. This panel of biomarkers potentially differentiates different types of lung cancer for classification. Among them, the transthyretin (TTR) concentration was highly increased in human serum of lung cancer patients. TTR concentration was also induced in the serum, bronchoalveolar lavage fluid, alveolar type II epithelial cells, and alveolar myeloid cells of the CCSP-rtTA/(tetO)7-Stat3C lung tumor mouse model. Recombinant TTR stimulated lung tumor cell proliferation and growth, which were mediated by activation of mitogenic and oncogenic molecules. TTR possesses cytokine functions to stimulate myeloid cell differentiation, which are known to play roles in tumor environment. Further analyses showed that TTR treatment enhanced the reactive oxygen species production in myeloid cells and enabled them to become functional myeloid-derived suppressive cells. TTR demonstrated a great influence on a wide spectrum of endothelial cell functions to control tumor and immune cell migration and infiltration. TTR-treated endothelial cells suppressed T cell proliferation. Taken together, these 13 Stat3 downstream inducible secretory protein biomarkers potentially can be used for lung cancer diagnosis, classification, and as clinical targets for lung cancer personalized treatment if their expression levels are increased in a given lung cancer patient in the blood
    • …
    corecore