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Abstract

Early detection of lung cancer offers an important opportunity to decrease mortality while it is still 

treatable and curable. Thirteen secretory proteins that are Stat3 downstream gene products were 

identified as a panel of biomarkers for lung cancer detection in human sera. This panel of 

biomarkers potentially differentiates different types of lung cancer for classification. Among them, 

the transthyretin (TTR) concentration was highly increased in human serum of lung cancer 

patients. TTR concentration was also induced in the serum, bronchoalveolar lavage fluid, alveolar 

type II epithelial cells and alveolar myeloid cells of the CCSP-rtTA/(tetO)7-Stat3C lung tumor 

mouse model. Recombinant TTR stimulated lung tumor cell proliferation and growth, which were 

mediated by activation of mitogenic and oncogenic molecules. TTR possesses cytokine functions 

to stimulate myeloid cell differentiation, which are known to play roles in tumor environment. 

Further analyses showed that TTR treatment enhanced the reactive oxygen species (ROS) 

production in myeloid cells and enabled them to become functional myeloid derived suppressive 

cells. TTR demonstrated a great influence on a wide spectrum of endothelial cell functions to 

control tumor and immune cell migration and infiltration. TTR-treated endothelial cells suppressed 

T cell proliferation. Taken together, these 13 Stat3 downstream inducible secretory protein 

biomarkers potentially can be used for lung cancer diagnosis, classification, and as clinical targets 

for lung cancer personalized treatment if their expression levels are increased in a given lung 

cancer patient in the blood.

Introduction

Lung cancer is a very aggressive malignant form of cancer, and is one of the biggest public 

health challenges facing the United States and many other countries. Although incidence 

rates have been stabilized, an estimated 154,050 Americans are expected to die from lung 

cancer in 2018, accounting for approximately 25.3 percent of all cancer deaths (https://

Address correspondence to: Dr. Cong Yan, Department of Pathology and Laboratory Medicine, Indiana University School of 
Medicine, 975 W Walnut Street, IB424G, Indianapolis, IN 46202. Tel: 1-317-278-6005. coyan@iupui.edu; or Dr. Hong Du, 
Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 975 W Walnut Street, IB424E, 
Indianapolis, IN 46202. Tel: 1-317-274-6535. hongdu@iupui.edu. 

HHS Public Access
Author manuscript
J Immunol. Author manuscript; available in PMC 2020 February 01.

Published in final edited form as:
J Immunol. 2019 February 01; 202(3): 991–1002. doi:10.4049/jimmunol.1800736.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/key-statistics.html


www.cancer.org/cancer/non-small-cell-lung-cancer/about/key-statistics.html). According to 

World Health Organization, around 1.37 million people die from lung cancer each year 

worldwide (http://www.who.int/mediacentre/factsheets/fs297/en/). Lung cancer is by far the 

leading cause of cancer death among both men and women. Each year, more people die of 

lung cancer than of colon, breast, and prostate cancers combined. Lung cancer is a difficult 

disease to detect in its early stages, with greater than 50% of patients diagnosed with lung 

cancer presenting with metastatic disease (http://seer.cancer.gov/statfacts/html/lungb.html). 

Early detection of lung cancer is an important opportunity for decreasing mortality while it 

is still treatable and curable (1). The overall 5-year survival rate is ~15 percent. Thus, it is 

essential to better understand the mechanisms that initiate lung carcinogenesis and find easy-

use biomarkers for more accurate lung cancer detection. Due to heterogeneity of lung 

cancers, a panel of biomarkers should be used for more accurate lung cancer detection and 

classification.

Signal transducer and activator of transcription 3 (Stat3) is well known for its lung cancer-

promoting activity (2) (3) (4). The Stat3 expression level was up-regulated in human lung 

cancers (5). To assess the consequences of STAT3 persistent activation in the lung, a 

doxycycline-controlled CCSP-rtTA/(tetO)7-Stat3C bitransgenic mouse model was generated 

that over-expresses STAT3C (a constitutively active form of STAT3) in alveolar type II (AT 

II) epithelial cells. In sequential steps, Stat3C over-expression up-regulated pro-

inflammatory molecules, increased inflammatory cell infiltration and caused 

adenocarcinomas in the lung (2). The GeneChip microarray analysis of lung tumor from the 

CCSP-rtTA/(tetO)7Stat3C mice revealed around 800 up- and down-regulated genes as 

potential lung cancer biomarkers with at least two-fold expression changes (p<0.05) (2). 

Since most of these genes are intracellular proteins, it is inconvenient to use them for the 

purpose of clinical diagnosis without going through biopsy.

Here we report identification of 13 soluble and secretory proteins, which were selected from 

the Stat3 downstream gene list with 2-fold increase (p<0.05) in lung tumors, as a panel of 

biomarkers for lung cancer detection in humans using the sera. This panel of biomarkers can 

potentially be used to differentiate different types of lung cancers. To elucidate tumorigenic 

functions of these biomarkers, one of 13 protein biomarkers, transthyretin (TTR), was 

selected for further analysis for its role in lung cancer promotion. TTR (also called 

prealbumin) is a homotetramer plasma protein of ~55 kDa, which is known for the 

transportation of thyroxine and retinol through binding to retinol-binding protein (6). 

However, TTR null mice suggest that TTR is not essential to thyroid hormone metabolism 

(7) and may not be crucial on retinol metabolism (8). We demonstrated that recombinant 

TTR protein enhanced myeloid cell differentiation, altered angiogenesis, and promoted lung 

tumor cell proliferation in vitro and tumor growth in vivo.

Materials and Methods

Human sample

The human serum samples of normal subjects and lung cancer patients (adenocarcinomas 

patients, squamous cell carcinomas patients, and small cell lung cancer patients) were 
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obtained from the Biosample Repository Core Facility (BRCF) of Fox Chase Cancer Center 

in Philadelphia.

Animal and cell lines

All scientific protocols involving the use of animals have been approved by the Institutional 

Animal Care and Use Committee (IACUC) in Indiana University School of Medicine and 

followed guidelines established by the Panel on Euthanasia of the American Veterinary 

Medical Association. Animals were housed under IACUC-approved conditions in a secure 

animal facility in Indiana University School of Medicine. Protocols involving the use of 

recombinant DNA or biohazardous materials have been approved by the Biosafety 

Committee of Indiana University School of Medicine and followed guidelines established by 

the National Institute of Health. The generation of doxycycline-controllable and alveolar 

type II epithelial cell-specific CCSP-rtTA/(tetO)7-Stat3C bitransgenic mouse model was 

previously described (2). Lewis lung carcinoma (LLC) cells or B16 melanoma cells were 

purchased from the American Type Culture Collection (ATCC).

Antibody production

The purified full length TTR protein was used as the antigen for rabbit immunization by a 

custom antibody production service (Rockland Immunochemicals Inc. Limerick, PA). The 

quality and the titer of TTR antibody in the serum was determined by ELISA and Western 

blotting.

Molecular cloning of the mouse TTR cDNA and Induction of recombinant TTR protein

The RNAs were extracted from mouse myeloid HD1A cells (Applied Biological Materials 

Inc., Canada) using RNeasy kit (QIAGEN) and reversely transcribed into cDNA by oligo-dT 

primer using Thermoscript transcriptase (Invitrogen, Carlsbad, CA) according to the 

manufacturer’s instruction. The cDNA was used in the polymerase chain reaction (PCR) to 

amplify TTR amplicon by Phusion DNA polymerase (New England Biolabs, Ipswich, MA) 

using primers Xma I-TTR-F (5’- AGC CCC GGG TGC CAC CAT GGC TTC CCT TCG 

ACT CTT C −3’) and Not I-FLAG-TTR-R (5’- ACA GCT CAG AGC GGC CGC TCA CTT 

GTC ATC GTC ATC CTT GTA ATC ATT CTG GGG GTT GCT GAC GA −3’). The TTR 

amplicon (502 bp) was gel-purified and digested with Xma I and Not I restriction enzymes 

(New England Biolabs) and cloned into the pGEX-4T-1 expression vector (GE Healthcare 

Life Sciences, Pittsburgh, PA). A thrombin-specific cleavage site was present between GST 

and inserted TTR-Flag. The reading frame and the inserted TTR-Flag cDNA was confirmed 

by sequencing and named as pGEX-4T-TTR-Flag. The expression of GST-TTR-Flag fusion 

protein (~42 kDa) was induced by IPTG in BL21 E. coli and the protein samples collected 

from pre-induction, pellet, and supernatant were analyzed by SDS-PAGE and visualized by 

Coomassie blue staining. The GST-TTR-Flag fusion protein in the soluble fraction was 

purified by GST column and digested by thrombin. The TTR-Flag band (~17 kDa) was 

monitored by Coomassie staining and confirmed by Western blot analyses using anti-FLAG 

antibody. The purified recombinant TTR-Flag protein was subjected to lipopolysaccharide 

(LPS) removal by endotoxin removal column.
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Western blot analysis

Bronchoalveolar lavage fluid (BALF) and serum were collected from wild-type, 

doxycycline-treated or untreated CCSP-rtTA/(TetO)7-Stat3C bitransgenic mice. Serum (1 μl) 

or BALF (6 μl) was mixed with Laemmli sample buffer (Bio-Rad, Hercules, CA) and heated 

at 95°C for 5 min, fractioned in Novex® 4–20% Tris-Glycine Mini Gels (Invitrogen, 

Carlsbad, CA) and transferred to polyvinylidene difluoride membranes (Bio-Rad, Hercules, 

CA). The membranes were incubated with rabbit-anti-TTR antibody (Abbiotec, San Diego, 

CA) at 4°C overnight and followed with secondary antibody (horseradish peroxidase (HRP)-

conjugated goat-anti-rabbit IgG, 1:2000). TTR was detected by incubation with SuperSignal 

West Pico chemiluminescent substrate (Thermo Scientific) and the images were taken by 

ChemiDoc MP imaging system (Bio-Rad).

To determine activation of signaling pathways by TTR treatment, LLC cells were seeded in 

6-well plates until ~75% confluent, and treated with LPS-removed TTR (1 and 0.1 μM) for 2 

hrs in the presence of exotoxin inhibitor polymyxin B (PMB) (100 μg/mL). The treated LLC 

cells were harvested using Cellytic-M cell lysis buffer with phosphatase and protease 

inhibitors. The cell lysates were centrifuged to remove insoluble cell debris. Protein 

concentrations in the lysates were determined by the BCA method. Twenty microgram total 

protein was analyzed by SDS-PAGE and transferred to a PVDF membrane. The membranes 

were probed by various antibodies (1:1000) against p-mTOR, p-NF-κB p65, p-S6, p-Stat3, 

p-ERK, p-Akt and p-p38 (Cell Signaling Technology, Danvers, MA), followed by secondary 

anti-rabbit IgG, HRP-conjugated antibody (1:2000).

Immunohistochemistry staining of TTR

The lungs from doxycycline-treated or untreated CCSP-rtTA/(TetO)7-Stat3C mice were 

inflated with 4% paraformaldehyde, harvested, stored in 4% paraformaldehyde overnight 

and paraffin embedded as previously described (9). Tissue sections (5-μM) were incubated 

with rabbit-anti-TTR antibody (1:500) at 4°C overnight, and followed by biotinylated goat-

anti-rabbit antibody (1:1,000). The color signals were detected with a Vectastain Elite ABC 

kit following manufacturer’s instructions (Vector Laboratory, Burlingame, CA). Rabbit IgG 

was used as negative control.

The proliferation of tumor cells in vitro assay

Mouse B16 melanoma cells and LLC cells were seeded in 48-well plates (5×103 cells/well). 

After overnight incubation, cells were treated with 0, 1 or 5 μM LPS-removed TTR in the 

presence of 100 μg/mL PMB. After 2 or 3 days, tumor cells were detached by accutase 

(Sigma, St. Louis, MO) and the cell numbers were counted by a hemocytometer.

Subcutaneous injection of tumor cells in mouse models

LLC cells (5×105) or B16 melanoma cells (2×105) were incubated with 20 μM TTR/PMB 

protein for 1 hr and subcutaneously flank-injected into syngeneic C57BL/6 mice. 

Furthermore, LLC cells (5×105) or B16 melanoma cells (1×106) incubated with 20 μM 

TTR/PMB were subcutaneously flank-injected into allogeneic FVB/N mice. The tumor 

growth was estimated by measuring the maximal length (L) and width (W) and the tumor 

volume was calculated using the formula of 0.5xLxW2 (mm3).
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siRNA knockdown

LLC cells grown in 60-mm dish until ~70% confluence were transfected with three siRNAs 

(against three independent regions) targeting Akt, mTOR, Akt/mTOR or NFκB p65 using 

Dharmacon siRNA transfection reagent according to the manufacturer’s instructions 

(Dharmacon, Lafayette, CO). After 2-day incubation, LLC cells (5×105 cells) were 

harvested and treated with 5 μM TTR/PMB and subcutaneously flank-injected into wild-

type C57BL/6 mice for tumor growth analyses. The effectiveness of siRNA knockdown was 

assessed by Western blot of each target protein.

Fluorescence activated cell sorting (FACS) analysis

For in vivo immune cell profiling, TTR (320 μg / mouse) was i.v. injected into wild type 

mice twice a week for two weeks, and PBS was used as control. Single-cell suspensions 

from the bone marrow, blood and spleen were prepared as previously described (10). 

Approximately 1–3 × 106 cells from various organs were incubated with FcR blocking Abs 

in FACS buffer (BD BioSiences, San Jose, CA) followed by isotype control or surface 

specific primary Abs. For in vitro differentiation, the bone marrow cells from wild type 

mouse were cultured in 96 wells plate (1× 106 cells per well), and treated with LPS-removed 

TTR/PMB at concentrations of 0, 0.2, 1 or 5 μM for 2 days. Cells were harvested for surface 

staining with fluorescence conjugated anti-mouse antibodies. Anti-mouse MHCII FITC, 

anti-mouse Ly6C FITC, anti-mouse CD11c PE, anti-mouse F4/80 Apc, anti-mouse CD11b, 

anti-mouse Ly6G (RB6–8c5), anti-mouse CD4 FITC, anti-mouse CD8 PE, and anti-mouse 

B220 Apc were purchased from e-Biosciences (San Diego, CA).

For TTR expression in mice, cells from the lung, blood, and spleen were prepared and 

stained with surface markers (SP-C, Ly6G and CD11b antibodies). Fixed cells were 

permeabilized using BD Cytofix/CytopermTM Fixation/Permeabilization Kit according to 

the manufacture’s instruction. Cells were incubated with the anti-TTR antibody (1:500) at 

4°C overnight. Next day, cells were washed and labeled with the secondary antibody for 

flow cytometry analysis. For expression of signaling molecules in bone marrow cells or ECs, 

cells were treated with 50 μg/mL PMB or 1 μM TTR/PMB for 2 hours and then stained with 

various cell surface markers, followed by intracellular staining of anti-mouse pAKT, anti-

mouse pmTOR, anti-mouse pS6, anti-mouse pp38, anti-mouse pERK and anti-mouse pp65 

antibodies (Cell signaling, Beverly, MA). Flow cytometry was analyzed on a LSRII machine 

(BD Biosciences, San Jose, CA). Data were analyzed using the BD FACStation™ Software 

(BD Biosciences, San Jose, CA). Quadrants were assigned using isotype control mAb. Data 

were processed using the CellQuest software.

Differentiation of bone marrow cells

Wild type FVB/N mouse femur bones were harvested and cut into small pieces aseptically to 

release bone marrow cells. The whole bone marrow cells were treated with 10 μM 

TTR/PMB for 2 days. The harvested cells were stained with antibodies against various cell 

surface markers, including CD11b, CD11c, F4/80, Ly6G and Ly6C, followed by 

intracellular staining of p-Akt, p-mTOR, pS6, p-NF-κB p65, p-ERK, and p-p38. The stained 

cells were subjective to flow cytometry analysis.
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Reactive oxygen species (ROS) measurement of myeloid cells

Fresh bone marrow cells (1×106) from wild type mice were recovered in RPMI 1640 

medium (10% FBS) at 37oC for 1 hour, followed by treatment with or without TTR (1, 5 

μM) in PMB (50 μg/ml) for 1 hour. Treated cells were stained with myeloid lineage specific 

surface markers and 2 μmol/L 2’, 7’-dichlorofluorescein diacetate (Invitrogen). The ROS 

level was measured by flow cytometry in gated areas using a LSRII machine (Becton 

Dickinson).

Immunosuppressive assay of Ly6G+ myeloid cells

Freshly isolated spleen CD4+ T cells from the wild type mice were labeled with 

carboxyfluorescein diacetate succinimidyl diester (CFSE) and cultured in 96 wells plate (0.2 

×106 cells/ well), which were pre-coated with anti CD3 (2μg/ml in PBS) and anti CD28 

(5μg/ml in PBS) antibodies in RPMI1640 medium (10% FBS) at 37oC. Next day, freshly 

isolated Ly6G+ cells from the bone marrow of wild type FVB/N mice that were treated with 

or without TTR (5 μM) overnight were added to CFSE-labeled CD4+ T cells at a 5:1 ratio, 

and continuously incubated with or without 5 μM TTR in PMB (50 μg/ml) for 4 days. Cells 

were harvested and stained with APC-labeled anti-CD4 mAb (eBiosciences). Proliferation 

of CD4+ T cells was evaluated as CFSE dilution by flow cytometry.

Endothelial cell (EC) tube formation:

ECs were isolated from the wild type lung as previously described (11), and treated with 50 

μg/mL PMB, or 0.1 μM or 1 μM TTR/PMB for 24 h. Cells (5 × 104) were seeded in 48-well 

plates pre-coated with 150 μl/well growth factor-reduced matrigel (BD BioSiences). After 6 

hours, tube formation was observed with an inverted microscope (Nikon, Melville, NY) as a 

tube-like structure exhibiting a length four times its width. Images of tube morphology were 

taken in 5 random microscopic fields per sample at × 40 magnifications, and the cumulative 

tube lengths were measured by Nikon NIS Elements imaging software.

EC migration

Wild type lung ECs (1.5×105) were seeded into a 24-well plate and incubated overnight to 

form a confluent monolayer. After creating a scratch on the cell monolayer, 50 μg/mL PMB, 

or 0.1μM or 1μM TTR/PMB was added into the medium in the presence of mitomycin C to 

prevent cell proliferation. Images were taken at 0 and 15 hours after creating the scratch. 

ECs migration was estimated by measuring the distance from one side of the scratch to the 

other side using Nikon NIS Elements imaging software.

Proliferation

Wild type lung ECs (5×104) were seeded into 24-well plates. Two days later, 50 μg/mL 

PMB, or 0.1μM or 1μM TTR/PMB was added into the medium. Twenty-four hours later, EC 

cell numbers were counted.

EC permeability

Isolated wild type lung ECs (5×104) were added to the upper chamber of 24-well 8.0-μm-

pore Transwell plates (Corning, Tewksbury, MA). After incubated at 37°C, 5% CO2 for 48 
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hours to form a monolayer, ECs were treated with 50 μg/mL PMB, or 0.1 μM or 1 μM 

TTR/PMB for 24 hours. The supernatant was removed, and CellTrackerTM Green 5-

Chloromethylfluorescein Diacetate (CMFDA)-labeled bone marrow cells (1×104 cells in 200 

μL media) were added to the upper well. Four hours later, transendothelial migration of bone 

marrow cells was determined by counting their numbers in the lower chamber from 5 

randomly selected microscopic fields.

EC immunosuppression on T cells

The effect of TTR on wild type EC immunosuppressive function was analyzed by T cell 

proliferation assay. To isolate T cells, wild type mouse splenocytes were incubated with 

biotinylated anti-CD4 antibody, followed by positive selection on magnetic beads and eluted 

from magnetic separation columns according to the manufacturer’s instructions (Miltenyi 

Biotec). The purified CD4+ T cells were labeled with 1 μM carboxyfluorescein succinimidyl 

ester (CFSE) at 37°C for 10 min. After washing, cells were resuspended with growth 

medium and incubated at 37°C for 20 min. CFSE-labeled wild type CD4+ T cells were co-

cultured with ECs that were pre-treated with 50 μg/mL PMB, or 0.1 μM or 1 μM TTR/PMB 

in 96-well plates, which were pre-coated with anti-CD3 mAb and anti-CD28 mAb, for 4 

days at 10:1 ratio between CD4+ T cells: wild type ECs. The proliferation of CD4+ T cells 

was analyzed by flow cytometry. PBS was used as a negative control.

Statistics

Statistical analyses were carried out in Word Excel 2016 (for animal studies) and SAS 

version 9.4 and R version 3.1.0 (for human studies). For animal studies, the data were mean 

values of multiple independent experiments and expressed as the mean ± SD. ANOVA and 

Tukey’s method based on log-transformed concentration level were used to evaluate the 

significance of the differences. Statistical significance level was set at p < 0.05. For human 

serum analyses of biomarkers, Kruskal-Wallis tests with pair-wise Wilcoxon Rank Sum tests 

(Bonferroni-adjusted) were used to compare distributions of biomarkers among controls and 

cancer types. The area under the curve (AUC) was determined by cross-validated sensitivity-

specificity ROC (Receiver Operating Characteristic) curve analysis to evaluate the 

diagnostic ability of biomarkers. To further distinguish between both cancer and controls 

and between different types of lung cancers, the CART method (Classification and 

Regression Tree – specifically RPART and TREE in R) was used. RPART utilizes all 

available cases. TREE, which only utilizes cases with all biomarkers available, was used to 

see if the classification results depended on the type of analytic method used.

Results

Stat3 downstream genes serve as biomarkers for human lung cancer diagnosis

The concentrations of all thirteen secretory proteins showed statistically significant 

differences in at least one type of lung cancer compared with normal human subjects by 

ELISA (Table 1). Optimal cut point for each biomarker using minimum specificity method 

(specificity=.80) and AUCs are listed in Table 1. When comparing central tendencies among 

the four groups, Markers 1, 2, 3, 4, 5, 6, and 10 all showed significant differences between 

each tumor type and control. For the other biomarkers, non-significant differences were seen 
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mostly in either squamous cells, small cells, or both. The areas under the ROCs display 

similar patterns. The lowest areas are for squamous cell and/or small cell in biomarkers 7–

13. Statistical analyses using CART method (Classification and Regression Tree specifically 

RPART and TREE) revealed that different combinations in this panel of secretory protein 

biomarkers distinguished different types of lung cancers (Table 2). For example, the 

misclassification rate for cancer vs control was 11.2% using the RPART method.

The expression and distribution of TTR in CCSP-rtTA/(TetO)7-Stat3C bitransgenic mice

Ups and downs of protein biomarkers in human patients implicate their functional roles in 

lung cancer formation. They are potential therapeutic targets for personalized lung cancer 

treatment if their pathogenic roles are clear. Based on its highly increased concentration and 

AUC in all three human lung cancer categories, TTR was chosen for further analysis. In 

addition to human lung cancers (Figure 1A, Table 1), TTR (monomer ~14 kDa) was 

detected in the sera of CCSP-rtTA/(TetO)7-Stat3C bitransgenic mice. In doxycycline-treated 

bitransgenic mice with spontaneous lung tumors (CA group), all mice showed higher TTR 

protein levels (Figure 1B). In BALF from doxycycline-treated bitransgenic mice with 

spontaneous lung tumors, the TTR levels were also higher than those in BALF from other 

three groups (+DOX, -DOX and WT groups) (Supplemental Figure 1A). The intracellular 

TTR protein levels in the lung and blood were analyzed by flow cytometry analyses with 

anti-TTR antibody and cell surface markers. In the lung, the TTR expression levels were 

higher in whole lung cells, SPC+ alveolar type II (AT II) epithelial cells, CD11b+Ly6G+ 

cells, and Ly6G+ cells in doxycycline treatment (Figure 1C, Supplemental Figure 1B). In the 

blood, the TTR expression levels were also higher in whole white blood cells with 

doxycycline treatment, but not in CD11b+Ly6G+ cells, CD11b+ cells and Ly6G+ cells 

(Supplemental Figure 1C). The spleen showed no difference of TTR expression levels in 

doxycycline treated and untreated mice (Data not shown). By IHC staining of lung tissues, 

the TTR protein was positive in AT II epithelial cells (arrows) and alveolar macrophages in 

both doxycycline-treated and untreated bitransgenic mice, with stronger signals in the 

doxycycline-treated group (Figure 1D).

Recombinant TTR stimulates tumor cell proliferation and growth

TTR cDNA was subcloned and expressed in bacteria (supplemental Figure 2A-C). The 

purified recombinant TTR protein (1 or 5 μM) after LPS removal (supplemental Figure 2F) 

was incubated with Lewis lung carcinoma (LLC) cells or B16 melanoma cells for cell 

proliferation assessment in in vitro cell culture experiment. To eliminate the effect of 

residual LPS in recombinant TTR, polymyxin B (PMB) was used to block LPS. Comparing 

with the PMB control group, TTR treatment significantly enhanced LLC or B16 melanoma 

cell proliferation (Figure 2A). Recombinant TTR without LPS removal showed a similar 

result (Supplemental Figure 2G-H). In all subsequent studies, LPS-removed recombinant 

TTR was used in combination with PMB to minimize the LPS interference. In tumor growth 

in vivo study, LLC cells or B16 melanoma cells were pre-treated with recombinant 

TTR/PMB and flank-injected into syngeneic C57BL/6 mice. The flank-injected LLC tumors 

with TTR/PMB pre-treatment grew much faster than those with PMB treated control mice at 

11, 14, and 18 days post injection (Figure 2B). In the allogeneic FVB/N mouse model, LLC 

tumors showed the same results, although the tumor sizes were smaller in general (Figure 
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2C). When the B16 melanoma model was tested, similar results were observed 

(Supplemental Figure 2I-J).

The levels of phosphorylated forms of mitogenic molecules Akt1, mTOR, S6, ERK, p38, 

NFκB p65, and Stat3 proteins were investigated by TTR/PMB treatment. TTR/PMB 

treatment of LLC cells led to increased activation of p-Akt1, p-mTOR, and p-NFκB p65, 

while the levels of p-ERK and p-p38 were relatively unchanged (Figure 2D). Inhibition of 

Akt1, mTOR or Akt1/mTOR by siRNAs knockdown (Supplemental Figure 2K) impaired 

LLC’s proliferative ability in response to TTR/PMB treatment (Figure 2E). When tested in 

vivo, LLC cells were knocked down with Akt1, mTOR, or Akt1/mTOR siRNAs before 

subcutaneous flank-injection to the wild type C57BL/6 recipient mice. mTOR knockdown 

greatly decreased tumor growth by TTR/PMB stimulation comparing with control siRNA 

knockdown, which was further decreased by Akt1/mTOR double knockdown (Figure 2F). 

NFκB p65 knockdown (Supplemental Figure 2K) also decreased tumor growth by 

TTR/PMB stimulation comparing with control siRNA knockdown (p<0.05) (Figure 2G). 

These results suggest that the Akt1/mTOR pathway and the NFκB pathway in cancer cells 

are responsible for TTR stimulation.

TTR is an immune cell regulator

In addition to directly stimulating cancer cells, it is intriguing to determine if TTR is 

involved in differentiation of various immune cells that are known to play important roles in 

the tumor environment. Purified and LPS-removed recombinant TTR was injected into wild 

type mice twice in one week for two weeks. Profiling of total bone marrow cells by flow 

cytometry showed that the majority of immune cells in the myeloid compartment (CD11b
+Ly6G+, CD11b+, Ly6G+, Ly6C+, F4/80+ cells) showed increased differentiation, while 

CD8+ and B220+ cells were decreased comparing with the control group (Figure 3A, 

Supplemental Figure 3A). This concludes that TTR has a cytokine-like function specific for 

increasing myeloid cell differentiation in the bone marrow.

To confirm these observations of myeloid differentiation, whole bone marrow cells were 

isolated from wild type mice and cultured in vitro with TTR/PMB for two days. TTR/PMB 

stimulated CD11bhigh+, CD11C+ and F4/80+ myeloid lineage differentiation in a dose 

dependent manner (Figure 3C,D,F), while stimulated Ly6Chigh+, MHCII myeloid lineage 

differentiation starting at a low dosage of TTR (0.2 μM) (Figure 3B,G). The Ly6G+ 

population was the only exception, showing down-regulation (Figure 3E) that contradicts the 

in vivo observation (Figure 3A). The double positive CD11bhigh+Ly6Chigh+ cells, which are 

myeloid progenitor cells, were also increased in a dose-dependent manner after TTR/PMB 

treatment (Figure 3H). To show the activation status of immune cells treated by TTR/PMB, 

activation of various cellular signaling molecules were investigated. As demonstrated in 

Figure 4A-C (and Supplemental Figure 4A-C), the phosphorylation levels of Akt1, mTOR, 

and S6 were increased after TTR/PMB treatment by flow cytometry, suggesting that the 

metabolic reprogramming controlled by the Akt1/mTOR pathway is involved in TTR-

mediated myeloid lineage differentiation. Activation of ERK, p38, and NFκB p65 molecules 

were also concomitantly increased in myeloid lineage cells (Figure 4D-F, and Supplemental 

Figure 4D-F).
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TTR increases ROS production and immunosuppression of myeloid cells

Functionally, TTR/PMB treatment increased cellular ROS production in CD11b+, Ly6G+, 

CD11b+Ly6G+, CD11C+, Ly6C+, MHCII+ and F4/80+ myeloid lineage cells (Figure 5A, 

Supplemental Figure 3B). High level expression of ROS is a hallmark for the CD11b+Ly6G+ 

myeloid population to be immunosuppressive. This may explain why CD8+ or B220+ cell 

differentiation was suppressed after TTR/PMB in vivo treatment (Figure 3A). To confirm 

this assumption, in vitro CFSE-labeled T cell proliferation was performed by incubating 

with TTR/PMB treated CD11b+Ly6G+ cells. While TTR/PMB treatment alone showed no 

effect on T cell proliferation (Figure 5B, middle panel), TTR/PMB treatment of CD11b
+Ly6G+ cells from the bone marrow showed significant suppression on CFSE-labeled wild 

type splenocyte T cell proliferation in co-culture experiment with stimulation of anti-CD3 

mAb plus anti-CD28 mAb (Figure 5B, lower panel). It seems that TTR treatment is able to 

convert wild type bone marrow CD11b+Ly6G+ cells to myeloid-derived suppressive cells 

(MDSCs). Therefore, increased TTR concentration creates an immunosuppressive 

environment to benefit tumor growth.

TTR enhances EC angiogenic functions

Endothelial cells are major cellular component of the alveolar structure and pulmonary 

vasculature, which control infiltration of cancer cells and immune cells into the lung. As 

shown in Figure 6A, the TTR expression level was significantly increased in lung CD31+ 

ECs after doxycycline treatment of CCSP-rtTA/(TetO)7-Stat3C bitransgenic mice. To 

determine whether TTR influences the formation of capillary-like tubes by lung ECs, an 

important parameter of angiogenesis, the in vitro matrigel tube formation assay was 

performed. TTR/PMB pre-treated wild type ECs formed more tubes than those of PMB pre-

treated control ECs, demonstrating that TTR had ability to enhance EC tube formation in 
vitro (Figure 6B). To test whether TTR/PMB affects EC migrating ability, monolayers of 

wild type ECs were treated with PMB or TTR/PMB in the presence of mitomycin C to 

eliminate the potential effects of EC proliferation. As shown in Figure 6C, 15 h after 

creating the scratch, TTR/PMB-treated wild type ECs demonstrated increased migration 

comparing with that of PMB-treated ECs in wound healing assay, evidenced by a 

significantly reduced wound area lacking cells. In a separate experiment, TTR/PMB 

stimulated EC proliferation (Figure 6D). Transwell assay was performed to determine the 

effect of TTR/PMB on the EC permeability. Freshly isolated wild type bone marrow cells 

were labeled with CMFDA and loaded on primary lung EC monolayers that were pre-treated 

with PMB or TTR/PMB for 24 h. As shown in the Figure 6E, TTR/PMB-treated wild type 

lung ECs showed increased permeability with more bone marrow cells migrating to the 

lower chamber than that of PMB-treated ECs. ECs are known for their influence on T cell 

activity (12). When wild type ECs were pre-treated with TTR/PMB and co-cultured with 

CFSE-labeled wild type splenocyte CD4+ T cells, with stimulation of anti-CD3 mAb plus 

anti-CD28 mAb, TTR/PMB treated ECs suppressed T cell proliferation comparing with that 

of PMB-pretreated ECs (Figure 6F).
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Discussion

Lung cancers are inflammation-associated diseases. Inflammatory molecules are valuable 

tools to reveal lung cancer occurrence. At the moment, the clinical solution for lung cancer 

detection using protein biomarkers is challenging and premature (13). This is because lung 

cancers are heterogeneous diseases and caused by multiple factors, a particular biomarker 

may or may not be up-regulated in a given patient. Conversely, a given biomarker can be 

upregulated in different types of diseases. Therefore, it is difficult to use one or two 

biomarkers for accurate lung cancer detection or prediction. To solve this clinical challenge, 

multiple biomarkers should be developed and used for more accurate lung cancer detection 

and classification. Different inflammatory diseases (including cancers) produce distinctive 

sets of molecules, which can be used as a panel of signature biomarkers for disease 

distinguishing. Since the high expression level of STAT3 was associated with advanced 

tumor stage (14), secretory protein biomarkers identified here have multiple advantages, 

especially they detect lung cancer in the patient blood without going through biopsy (Table 

1). Combination of these biomarkers significantly eliminated false positive rate in lung 

cancer diagnosis. Importantly, they distinguished different types of human lung cancers 

(Table 2).

Upregulation of protein biomarkers contributes to the tumor microenvironment that in favor 

of tumor growth and metastasis. Therefore, it is critical to elucidate their functional roles in 

tumor formation and immune reaction in order to better use them for lung cancer prediction, 

and further, for personalized treatment and precision medicine. Previously, chitinase 3-like 1 

(CHI3L1), one of 13 biomarkers, has been shown to stimulate proliferation and growth of 

lung cancer cells (9). TTR was originally identified as a transport protein in the serum that 

carries the thyroid hormone thyroxine (T4) and retinol-binding protein bound to retinol (6, 

15). It has been extensively studied in the brain, and associated with neurological diseases 

(16). In this report, TTR was highly expressed in the blood of human patients with 

adenocarcinoma, squamous carcinoma and small cell lung cancer (Figure 1A). The same 

observation was confirmed in the CCSP-rtTA/(tetO)7-Stat3C lung tumor mouse model 

(Figure 1B), which matched the result of gene profile analysis (2). In addition to being 

produced by alveolar type II epithelial cells where Stat3C was overexpressed, TTR was also 

produced by pulmonary myeloid lineage cells (Figure 1C, D) and lung endothelial cells 

(Figure 6A) in the CCSP-rtTA/(tetO)7-Stat3C mouse model, probably through secondary 

inducible effects.

Based on our characterization, TTR has pleiotropic functions in multi-aspects of 

tumorigenesis. First, TTR directly targeted and stimulated LLC and B16 melanoma cell 

proliferation in vitro and growth in vivo (Figure 2A-C, Supplemental Figure 2G-J). This was 

mediated through activation of the Akt/mTOR and NFκB pathways (Figure 2D). mTOR is a 

master regulator of serine/threonine protein kinase family member that regulates cell growth, 

proliferation, migration, survival, protein synthesis and transcription in response to growth 

factors and mitogens (17). Oncogenic activation of the mTOR pathway has been reported to 

induce several processes required for cancer cell growth, survival and proliferation (18). 

Akt1 is the upstream regulator of mTOR. Ablation of Akt1 and mTOR by siRNA 

knockdown reduced TTR stimulation of LLC proliferation and growth (Figure 2E-F). These 
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observations showed that metabolic master regulator mTOR is required for TTR stimulation 

of tumor cells. NFκB is another important oncogenic pathway important for tumor growth 

(19). Ablation of NFκB by siRNA knockdown reduced TTR stimulation of LLC tumor 

growth as well (Figure 2G).

Second, in addition to directly stimulating cancer cell proliferation and growth, TTR 

demonstrated features of cytokines to regulate immune cell differentiation. Tumor initiation, 

growth and metastasis are largely facilitated and dependent on their interactions with 

surrounding immune cells, which are critical components in the tumor environment. The 

high levels of TTR in the blood of human lung cancer patients and the CCSP-rtTA/(tetO)7-

Stat3C lung tumor animal model inevitably influence immune cell development and 

functions. Indeed, TTR injection into wild type mice led to increased differentiation of 

myeloid lineage cells (CD11b+Ly6G+, CD11b+, Ly6G+, Ly6C+, F4/80+), and decreased 

CD8+ and B220+ cells (Figure 3A). This was confirmed by in vitro study in which TTR 

stimulated myeloid lineage differentiation of isolated wild type bone marrow cells (Figure 

3B-H). Similar to cancer cells, TTR activated Akt1, mTOR, and S6 phosphorylation in 

myeloid lineage cells (Figure 4A-C). This is consistent with previous observations that 

mTOR-mediated metabolic reprogramming plays a critical role in myeloid-mediated tumor 

immunity (20, 21). ERK, p38, and NFκB p65 were also activated by TTR in myeloid cells 

(Figure 4D-F). In a separate mechanism, overproduction of ROS in myeloid lineage cells 

plays a critical role in their pro-tumor activity. Not only TTR treatment stimulated ROS 

production in wild type myeloid cells, but also converted wild type bone marrow CD11b
+Ly6G+ cells to become MDSCs that suppressed splenocyte T cell proliferation (Figure 5). 

Anti-tumor rejection largely relies on proper T cell proliferation and functions.

Third, the increased TTR concentration in the circulation system influences angiogenesis 

and EC functions. ECs are the major component of blood vessels and actively participate in 

regulation of inflammatory and tumorigenic processes through controlling circulating cell 

migration, vessel permeability, and cell infiltration into organs (22). TTR regulated ECs 

functions in several folds. It had ability to influence angiogenesis by enhancing EC tube 

formation (Figure 6B), and stimulating EC proliferation (Figure 6D). Permeability of EC 

depends on angiogenesis. TTR showed ability to increase both EC migration (Figure 6C) 

and permeability (Figure 6E). Migration, penetration and function of leucocytes and cancer 

cells in the blood are influenced by ECs. TTR treated ECs showed suppression of T cell 

proliferation (Figure 6F). It is noted that TTR showed modest effects on some cell types. 

However, combination of these effects contribute enormously to stimulation of tumor growth 

in vivo by surged TTR (Figure 2B&C, Supplemental Figure 2I&J), and created an 

immunosuppressive environment to benefit tumor growth.

Taken together, Stat3 and its downstream inducible protein biomarkers show promise as a 

valuable tool for lung cancer detection and classification. These blood soluble biomarkers 

actively participate in tumor proliferation, growth and invasion by directly stimulating 

cancer cells, as well as regulating immune cells and ECs in the tumor environment. 

Therefore, these biomarkers have potential for use as clinical targets for lung cancer 

personalized treatment if their expression levels are increased in a given lung cancer patient 

in the blood.
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Figure 1. Expression and distribution of TTR in humans and CCSP-rtTA/(TetO)7- Stat3C 
bitransgenic mice.
(A) Concentrations of TTR were determined by ELISA and cross-validated receiver 

operating characteristic (ROC) curve in human serum of normal smoker without cancer 

(control), adenocarcinoma (Adeno), squamous carcinoma (Squa) and small cell lung cancer 

(Small). ELISA results of other secretory protein biomarkers are summarized in Table 1; (B) 

The expression levels of TTR in the plasma of CCSP-rtTA/(TetO)7-Stat3C bitransgenic mice 

were determined by Western blot. The arrow points to TTR. WT, wild type; -Dox, 
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doxycycline untreated; +Dox, doxycycline treated without tumor; CA, doxycycline treated 

with tumor; (C) The relative TTR expression levels in whole cells, SPC+ cells, CD11b
+Ly6G+ cells, Ly6G+ cells and CD11b+ cells of the lungs from WT and doxycycline treated 

(+DOX) and untreated (-DOX) CCSP-rtTA/(TetO)7-Stat3C bitransgenic mice were 

determined by flow cytometry. n=4. *, p<0.05. See gating strategies in Supplemental Figure 

1B; (D) Hematoxylin-eosin (HE) staining (a-d) and immunohistochemical (IHC) staining 

against TTR (e-l) in the lungs of bitransgenic mice with (+DOX) or without (-DOX) 

doxycycline treatment. Solid arrows: alveolar type II epithelial cells. Nonsolid arrow: 

perivascular infiltrated immune cells. Tu: tumor. Original magnification: 200× (for H & E) 

and 400× (for IHC).
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Figure 2. Recombinant TTR stimulates tumor in vitro proliferation and in vivo growth.
(A) Lewis lung carcinoma (LLC) cells or B16 melanoma cells were treated with 0, 1 or 5 

μM TTR in the presence of polymyxin B (PMB). Cell numbers were determined by trypan 

blue exclusion assay. n=4–5, *, p<0.05, **, p<0.01; (B) LLC cells (5 × 105) were pre-treated 

with PBS (-TTR) or 20 μM TTR (+TTR) and flank injected in wild-type syngeneic recipient 

C57BL/6 mice. n=10, *, p<0.05, **, p<0.01; (C) LLC cells (5 × 105) were pre-treated with 

PBS (-TTR) or 20 μM TTR (+TTR) and flank injected in wild-type allogeneic recipient 

FVB/N mice. n=8, *, p<0.05, **, p<0.01; (D) LLC cells were treated with 0, 0.1 or 1 μM 
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TTR in the presence of 100 μg/mL polymyxin B (PMB) for 2 hrs. The phosphorylation 

levels of p-Akt, p-ERK, p-mTOR, p-NF-κB p65, and p-p38 were determined by Western 

blot. β-actin was used as a loading control; (E) Cell numbers (proliferation) of 0, 1, or 5 μM 

TTR-treated LLC cells were determined with Akt, mTOR or Akt/mTOR (A/m) knockdown 

by siRNAs for 2 days. n=4, *, p<0.05; (F) Tumor volumes in syngeneic recipient C57BL/6 

mice 14 days after flank injection of Akt, mTOR or Akt/mTOR (A/m) siRNA knockdown-

LLC cells (5 × 105 cells) that were pre-treated with 5 μM TTR. n=10, *, p<0.05, **, p<0.01; 

(G) Tumor volumes in syngeneic recipient C57BL/6 mice 14 days after flank injection of 

NFκB p65 siRNA knockdown-LLC cells (5 × 105 cells) that were pre-treated with 5 μM 

TTR. n=10, *, p<0.05, **, p<0.01. The tumor growth was measured by the maximal length 

(L) and width (W) and the tumor volume was calculated by the formula: LxW2/2 (mm3).
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Figure 3. Recombinant TTR stimulates immune cell differentiation in the bone marrow.
(A) The TTR effect on differentiation of bone marrow lineage cells in vivo. TTR (320 μg / 

mouse) was i.v. injected into wild type mice twice a week for two weeks, and PBS was used 

as control. Single cells from the bone marrow were analyzed by flow cytometry. The 

percentage numbers of various immune cells were presented. See gating strategies in 

Supplemental Figure 3A. (B-H) The TTR effect on differentiation of bone marrow myeloid 

lineage cells in vitro. Whole bone marrow cells were isolated from wild type mice and 

cultured in vitro with 0, 0.2, 1, or 5 μM TTR for two days. The percentage numbers of 
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various immune cells after flow cytometry and statistical analysis were presented. Results 

are mean ± SD from four mice in each group (n = 4). In all above, *, p<0.05. **, p<0.01.
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Figure 4. Stimulation of signaling molecules involved in differentiation of bone marrow myeloid 
lineage.
(A-F) Whole bone marrow cells were isolated from wild type mice and cultured in vitro 
with TTR (5 μM) treatment for 2 days. Antibodies against phosphorylated Akt, mTOR, S6, 

ERK, p38, and NFκB p65 in myeloid lineage cells were used, gated and analyzed by flow 

cytometry. The mean fluorescent intensity (MFI) were presented. Results are mean ± SD, n 

= 4, *, p< 0.05. **, p< 0.01. See gating strategies in Supplemental Figure 4.
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Figure 5. TTR increases ROS production and immunosuppression of myeloid cells.
(A) ROS production in gated myeloid cells. n=4. *, p<0.05. **, p<0.01. See gating strategies 

in Supplemental Figure 3B. (B) Immunosuppressive assays of Ly6G+ cells. CD4+ T cells 

were labeled with CFSE and stimulated by anti-CD3 and anti-CD28 antibodies (upper 

panel). TTR/PMB treatment alone did not affect splenocyte T cell proliferation (middle 

panel). TTR (5 μM) treated bone marrow Ly6G+ cells showed suppression on splenocyte T 

cell proliferation (lower panel). n=4. *, p<0.05. **, p<0.01.
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Figure 6. TTR enhances EC angiogenic functions in the lung.
(A) TTR expression in ECs was measured by gating CD31+ cells in whole lung cells of 

doxycycline-treated (+DOX) or untreated (-DOX) CCSP-rtTA/(TetO)7-Stat3C bitransgenic 

mice by flow cytometry. Wild type mice were used as control; (B) The effect of TTR on 

EC’s in vitro tube formation was analyzed by matrigel tube formation assay. Wild type ECs 

from the lung were pre-treated with TTR or PMB for 24 hours and tube formation on 

matrigel were measured. Data were normalized to ECs treated with 50 μg/mL PMB; (C) The 

effect of TTR on EC migration was assessed by the in vitro wound healing assay in the 

presence of mitomycin C; (D) The effect of TTR on EC proliferation was assessed by 
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counting the cell number; (E) The effect of TTR on EC permeability was assessed by the in 
vitro trans-well assay. Fluorescence-labeled bone marrow cells were seeded onto the EC 

monolayer that was pre-treated with PMB or TTR. Bone marrow cells that migrated to the 

lower chamber were counted. Original magnification ×40. (F) TTR induced EC 

immunosuppression on T cells. CFSE-labeled wild type CD4+ T cells were co-cultured with 

PMB or TTR pre-treated ECs and stimulated by anti-CD3 mAb and anti-CD28 mAb, 

followed by flow cytometry analysis. Peaks represent cell division cycles. PBS was used as a 

negative control. In all above experiments, data were expressed as mean ± SD; n = 4–5. *P < 

0.05, **P < 0.01.
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Table 1.

Cross-Validated Area Under the ROC of 13 secretory protein biomarkers.

Distribution Shift vs Control Group p-value* Cross-Validated Area Under the ROC (cutpoint**)

Adenocarcinoma(n=29) Squamous Cell (n=30) Small Cell (n=28) Adenocarcinoma (n=29) Squamous Cell (n=30) Small Cell (n=28)

Marker 1 <0.001 <0.001 0.001 .83 (30.4) .87 (28.1) .80 (27.5)

Marker 2 <0.001 <0.001 <0.001 .95 (742.0) .988 (1646.0) .98 (1959.0)

Marker 3 <0.001 <0.001 0.001 .998 (52.7) .97(47.1) .84 (45.8)

Marker 4 <0.001 <0.001 0.005 .98 (1441.3) .99 (995.0) .79 (759.5)

Marker 5 <0.001 <0.001 <0.001 1.0 (195.4) .99 (130.2) .89 (102.4)

Marker 6 <0.001 0.017 <0.001 1.0 (22.8) .78 (22.2) .96 (22.3)

Marker 7 0.009 0.049 1.000 .78 (29.0) .72 (36.6) .56 (33.9)

Marker 8 0.002 0.070 1.000 .82 (5.7) .71 (6.3) .58 (9.0)

Marker 9 0.143 0.029 0.421 .68 (21.4) .74 (33.8) .63 (32.1)

Marker 10 <0.001 0.001 <0.001 .89 (71.2) .86 (72.3) .93 (71.8)

Marker 11 <0.001 0.509 1.000 .88 (628.7) .62 (655.4) .52 (664.6)

Marker 12 0.310 0.188 0.044 .74 (4.3) .67 (4.0) .73 (4.1)

Marker 13 <.001 0.052 0.003 1.0 (18.5) .72 (24.5) .82 (18.5)

*
All overall tests were significant at the .05 level. P-values for pair-wise Wilcoxon Rank Sum tests are Bonferroni-adjusted.

**
Optimal cutpoint using minimum specificity method (specificity=.80).

Control group: normal human subjects without cancer. N = 29.

Secretory biomarker protein concentrations in human serum (50–100 μl) were determined by enzyme-linked immunoabsorbent assay (ELISA) 
according to the manufacturer’s instruction (R&D Systems, Minneapolis, MN) (for each cancer group, n=28–30). The human serum samples were 
diluted to 1:100 before assay. The cross-validated area under the curve (AUC) was determined by sensitivity-specificity ROC (Receiver Operating 
Characteristic) curve analysis.

Marker 1: CHI3L 1 - Chitinase 3-like 1; Marker 2: TTR - Transthyretin; Marker 3: FGb - Fibrinogen, beta polypeptide; Marker 4: FGL 1 - 
Fibrinogen-like protein 1; Marker 5: GUCA2A - Guanylate cyclase activator 2A (guanylin); Marker 6: DLK1 - Delta-like 1 homolog (Drosophila); 
Marker 7: GLUT3 - Glucose Transporter 3; Marker 8: CBLN1 - Cerebellin 1; Marker 9: ELA 1 - Elastase 1, pancreatic; Marker 10: Fga - 
Fibrinogen, alpha polypeptide; Marker 11: HRG - Histidine-rich glycoprotein; Marker 12: SHH - Sonic hedgehog homolog; Marker 13: TMEM27 - 
Transmembrane protein 27.
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Table 2.

Statistical analyses of the panel of secretory protein biomarkers in Table 1 using the CART method 

(Classification and Regression Tree - specifically RPART and TREE) to distinguish different types of lung 

cancers.

n #correctly classified #misclassified Error 
rate for 
RPART

Markers using Tree Error 
Rate for 
TREE

Cancer vs Control

2 splits-Marker 2 and Marker 
3

M5, 9, 2

Cancer 87 81 6

Control 29 22 7

116 103 13 11.2% 4.2%

Adeno vs Control

1 split-Marker 5 M3

Adenocarcinoma 29 29 0

Control 29 22 7

58 51 7 12.1% 0.0%

Small Cell vs Control

1 split-Marker 2 M2 and 7

Small Cell 28 27 1

Control 29 19 10

57 36 11 19.3% 2.7%

Squamous Cell vs Control

1 split - Marker 2 M5

Squamous Cell 30 26 4

Control 29 26 3

59 52 7 11.9% 0%

Using all 4 groups

4 splits - Markers 2, 3, 13, 10 M3, 2, 13, 6, 7, 5

Adenocarcinoma 29 23 6 (as 2 ctl, 4 sm)

Control 29 22 7 (as 1 adeno, 6 sm)

Small Cell 28 18 10 (as 6 adeno, 3 ctl, 1 
sq)

Squamous Cell 30 13 17 (as 10 adeno, 3 ctl, 4 
sm)

116 76 40 34.5% 14.1%

Cancer Only

5 splits - Markers 3, 13, 4, 12, 
1

M3, 4, 13, 6

Adenocarcinoma 29 25 4 (4 sq)

Small Cell 28 20 8 (7 adeno, 1 sq)

Squamous Cell 30 21 9 (8 adeno, 1 sm)
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n #correctly classified #misclassified Error 
rate for 
RPART

Markers using Tree Error 
Rate for 
TREE

87 66 21 24.1% 16.1%

For the RPART method, Markers 2 and 3 were chosen to distinguish between cancer and control (misclassification = 11.2%). When looking within 
the cancer samples only, Marker 3, 13, 4, 12 and 1 were chosen to classify the cancer types (misclassification rate = 24.1%). RPART utilizes all 
available data. For the TREE method, only cases with no missing biomarkers are used (n=71 out of 116 possible = 61%). Relevant markers are 
shown. Similar markers arise with both methods although Marker 5 comes up more often in the TREE method than RPART. The error rates are 
much lower with the TREE method, however 39% of the data is omitted. There were no differences in age, sex, or race between those with 
complete data and those who had a least one missing marker value.

J Immunol. Author manuscript; available in PMC 2020 February 01.


	Abstract
	Introduction
	Materials and Methods
	Human sample
	Animal and cell lines
	Antibody production
	Molecular cloning of the mouse TTR cDNA and Induction of recombinant TTR protein
	Western blot analysis
	Immunohistochemistry staining of TTR
	The proliferation of tumor cells in vitro assay
	Subcutaneous injection of tumor cells in mouse models
	siRNA knockdown
	Fluorescence activated cell sorting (FACS) analysis
	Differentiation of bone marrow cells
	Reactive oxygen species (ROS) measurement of myeloid cells
	Immunosuppressive assay of Ly6G+ myeloid cells
	Endothelial cell (EC) tube formation:
	EC migration
	Proliferation
	EC permeability
	EC immunosuppression on T cells
	Statistics

	Results
	Stat3 downstream genes serve as biomarkers for human lung cancer diagnosis
	The expression and distribution of TTR in CCSP-rtTA/(TetO)7-Stat3C bitransgenic mice
	Recombinant TTR stimulates tumor cell proliferation and growth
	TTR is an immune cell regulator
	TTR increases ROS production and immunosuppression of myeloid cells
	TTR enhances EC angiogenic functions

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.

