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Abstract

The underlying mechanisms that lysosomal acid lipase (LAL) deficiency causes infiltration of

myeloid-derived suppressor cells (MDSCs) in multiple organs and subsequent inflammation

remain incompletely understood. Endothelial cells (ECs), lining the inner layer of blood vessels,

constitute barriers regulating leukocytes transmigration to the site of inflammation. Therefore, we

hypothesized that ECs are dysfunctional in LAL-deficient (lal−/−) mice. We found that Ly6G+

cells transmigrated more efficiently across lal−/− ECs than wild-type (lal+/+) ECs, which was

associated with increased level of platelet endothelial cell adhesion molecule-1 (PECAM-1) and

monocyte chemoattractant protein-1 (MCP-1) in lal−/− ECs. In addition, lal−/−ECs showed

enhanced migration and proliferation, decreased apoptosis, but impaired tube formation and

angiogenesis. lal−/− ECs also suppressed T cell proliferation in vitro. Interestingly, lal−/− Ly6G+

cells promoted in vivo angiogenesis (including a tumor model), EC tube formation and

proliferation. Finally, the mammalian target of rapamycin (mTOR) pathway was activated in lal−/−

ECs, and inhibition of mTOR reversed EC dysfunctions, including decreasing Ly6G+ cell

transmigration, delaying migration, and relieving suppression of T cell proliferation, which was

mediated by decreasing production of reactive oxygen species (ROS). Our results indicate that

LAL regulates EC functions through interaction with MDSCs and modulation of the mTOR

pathway, which may provide a mechanistic basis for targeting MDSCs or mTOR to rejuvenate EC

functions in LAL-deficiency related diseases.

Introduction

Lysosomal acid lipase (LAL) hydrolyzes cholesteryl esters and triglycerides in the lysosome

of cells to generate free fatty acids and cholesterol. LAL deficiency has been reported to

result in pulmonary inflammation, which is associated with neutrophil infiltration, increases

of foamy macrophages and alternation of proinflammatory cytokines/chemokines (1, 2).
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Endothelial cells (ECs), which play a crucial role in regulating blood flow, controlling

vessel-wall permeability, and quiescing circulating leukocytes, are both active participants

and regulators of inflammatory processes at a site of inflammation (3). Failure of ECs to

adequately perform their functions constitutes endothelial cell dysfunction. In LAL-deficient

(lal−/−) mice, whether LAL deficiency-induced myeloid lineage cell infiltration is related to

EC dysfunctions has not been studied yet.

Myeloid-derived suppressor cells (MDSCs), characterized by the co-expression of myeloid-

cell lineage differentiation markers Ly6G and CD11b, are a heterogeneous population of

immature myeloid cells, whose accumulation is associated with multiple pathological

conditions (4-6). Recent studies addressed the roles of tumor-associated MDSCs in the

interplay between immune suppression and angiogenesis, showing that angiogenic factors

produced by MDSCs facilitated EC angiogenic functions (7-9). We previously reported that

the neutral lipid metabolic pathway controlled by LAL plays a critical role in the

development and homeostasis of MDSCs, and have demonstrated that LAL deficiency led to

the infiltration and accumulation of MDSCs in various tissues of the mice, such as the lung,

spleen, thymus, liver and small intestine (10-12). lal−/− MDSCs possess both immune

suppressive function and tumor stimulatory function (13, 14). However, little is known

about whether and how MDSCs influence EC functions during LAL deficiency.

The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that

regulates cell growth, proliferation, motility, survival, protein synthesis, and transcription in

response to growth factors and mitogens (15). In ECs, mTOR acts as a regulatory kinase,

playing an important role in EC survival, migration, and proliferation (16). We have recently

demonstrated that in lal−/− mice, the mTOR pathway was over-activated in bone marrow-

derived MDSCs (17). However, it is unknown whether the mTOR pathway is overly

activated in lal−/− ECs, and whether over-activation of this pathway is involved in EC

dysfunctions.

In the present study, EC functions in lal−/− mice, including transendothelial migration for

MDSCs and T cells, angiogenesis, and proliferation were determined. The ability of ECs in

regulating T cell proliferation and function was studied as well. Furthermore, the effects of

MDSCs on ECs were evaluated, focusing on MDSC transendothelial migration, EC

angiogenesis and proliferation. Finally, the mTOR pathway was investigated in lal−/− ECs.

Our study demonstrates for the first time that LAL deficiency results in EC dysfunctions

through interaction with MDSCs and over-activation of the mTOR pathway. Overproduction

of reactive oxygen species (ROS) is one of mediators involved in lal−/− EC dysfunctions.

These findings provide a mechanistic insight into LAL in controlling EC functions.

Materials and Methods

Animals

All scientific protocols involving the use of animals have been approved by the Institutional

Animal Care and Use Committee of Indiana University School of Medicine and followed

guidelines established by the Panel on Euthanasia of the American Veterinary Medical
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Association. Animals were housed under Institutional Animal Care and Use Committee-

approved conditions in a secured animal facility at Indiana University School of Medicine.

Isolation and in vitro culture of pulmonary ECs

ECs were isolated from lungs and cultured in vitro, based on published protocols with some

minor modifications (18, 19). Briefly, the mouse was anesthetized and 5 mL cold PBS was

injected via the right ventricle to flush the blood out. One milliliter of collagenase A (2

mg/mL, Roche, Indianapolis, IN, USA) was infused into the lung through the trachea. The

lung was removed and then incubated with 10 mL of collagenase A at 37°C for 30 min.

After the incubation, PBS was added to the tube, and the tube was vigorously shaken to

dissolve the lung. The resulting cell suspension was filtered through a 40 μm strainer and

centrifuged for 5 minutes at 1,500 rpm. After removal of the supernatant, the cell pellet was

subjected to magnetic bead sorting using anti-CD31 microbeads (Miltenyi Biotec., Auburn,

CA, USA) according to the manufacturer’s protocol. The resulting cells were plated onto

gelatin (Sigma-Aldrich, St. Louis, MO, USA)-coated six-well plates and maintained in

DMEM (Gibco, Grand Island, NY, USA) supplemented with endothelial cell growth

supplement, heparin, L-Glutamine (Sigma-Aldrich), fetal bovine serum (FBS), and

Antibiotic-Antimycotic (Gibco).

Isolation of bone marrow-derived MDSCs

MDSCs were isolated as we previously described (17, 20). Briefly, bone marrow cells were

isolated from the femurs and tibias of wild-type (lal+/+) and lal−/− mice. Cells were first

incubated with biotin-conjugated anti-Ly6G antibody (Miltenyi Biotec.) at 4°C for 15 min.

After washed with PBS, cells were incubated with anti-biotin microbeads (Miltenyi Biotec.)

at 4°C for another 15 min. Subsequently, cells were subjected to magnetic bead sorting

according to the manufacturer’s instructions (Miltenyi Biotec.). The resulting cells were

seeded into 96-well plates for further studies.

Isolation of bone marrow-derived macrophages

Macrophages were isolated based on a published protocol (21). Briefly, bone marrow cells

were harvested from lal+/+ and lal−/− mice. Cells were then cultured in DMEM/F12 medium

(Gibco) supplemented with 10% FBS and 50 ng/mL recombinant M-CSF (R&D,

Minneapolis, MN, USA). After 7 days’ culture, unattached cells were removed, and more

than 95% of remaining adherent cells were positive for F4/80 and CD11b by flow cytometry

analysis.

Transwell assay

Transwell assay was used to determine MDSC transendothelial migration. ECs were

collected by Accutase (Sigma-Aldrich) digestion. Around 5×104 cells in 250 μL media were

added to the upper chamber of 24-well 6.5-μm-pore Transwell plates (Corning, Corning,

NY, USA), while 500 μL media was placed in the lower chamber. Cells were incubated at

37°C, 5% CO2 for 48 h to form an EC monolayer. Then the supernatant was removed, and

CellTrackerTM Green 5-Chloromethylfluorescein Diacetate (CMFDA) (Invitrogen, Grand

Island, NY, USA)-labeled MDSCs (1×104 cells in 250 μL media) were added to the upper
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well. The media in the lower chamber was replaced with the same media as the upper

chamber. After 6 h, transendothelial migration of MDSCs was determined by counting their

numbers in the lower chamber under 5 random microscopic fields. For the neutralization

study, ECs were pretreated with 10 μg/mL neutralizing antibody against PECAM-1, MCP-1,

IL-6, TNF-α or control IgG for 1h.

Tube formation assay

The in vitro angiogenic activity of ECs was determined by matrigel tube formation assay as

previously described (22). Briefly, ECs were seeded at a density of 5×104 cells/well in 48-

well plates precoated with 150 μL/well growth factor-reduced matrigel (BD Biosciences,

San Jose, CA, USA). After 6 h of incubation, tube formation was observed with an inverted

microscope with image capture system (Nikon, Melville, NY, USA). Tube formation was

defined as a tube-like structure exhibiting a length four times its width (23). To detect the

effect of MDSCs on EC tube formation, MDSCs and ECs were co-cultured overnight.

Images of tube morphology were taken in 5 random microscopic fields per sample at × 40

magnification, and the cumulative tube lengths were measured by Image-Pro Plus software

(Media Cybernetics, Rockville, MD, USA).

In vitro wound healing assay

In vitro wound healing assay was performed to analyze EC migration as previously

described (24). Briefly, ECs were seeded at a density of 1.5×105 cells/well into a 24-well

plate and incubated overnight to form a confluent monolayer. Scratch was created by

scraping the cell monolayer in a straight line with a p200 pipet tip. After washing 3 times

with PBS, the medium was changed with DMEM containing 10% FBS and 5 μg/mL

mitomycin C (Sigma-Aldrich), and ECs were kept on culture at 37°C, 5% CO2. Images were

taken at 0 and 15 h after creating the scratch. Migration was estimated by measuring the

distances from one side of scratch to the other side using Image Pro-Plus software (Media

Cybernetics).

Small interfering RNA transfection

Before transfection, ECs were seeded into 6-well plates at a density of 2.5×105 cells/well

and incubated overnight. For small interfering RNA (siRNA)-mediated gene knockdown, 50

nmol/L of mTOR siRNA SMARTpool, platelet endothelial cell adhesion molecule-1

(PECAM-1, PECAM, CD31) siRNA SMARTpool, vascular endothelial growth factor

receptor 2 (VEGFR2) siRNA SMARTpool or control siRNA (Dharmacon, Chicago, IL,

USA) were transfected into cells with DharmaFECT Transfection Reagent IV (Dharmacon)

according to the manufacturer’s protocol. After 72 hours of transfection, cells were

harvested for further analysis.

Western blot analysis

Western blot analysis was performed as previously described (22). Briefly, ECs were lysed

in Cell Lytic MT lysis buffer (Sigma-Aldrich) with Protease Inhibitor Cocktail (Invitrogen)

for 15 minutes on a shaker. After centrifugation for 10 minutes at 12,000×g (4°C), the

supernatants were saved and protein concentrations of the samples were determined using
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the Pierce BCA Protein Assay Kit (Thermo Scientific, Waltham, MA, USA). Equal amounts

of protein (30 μg) were loaded onto SDS-polyacrylamide gels and blotted onto PVDF

membranes (BioRad, Hercules, CA, USA). Western blots analysis used antibodies against

mTOR downstream S6, and p-S6 (rabbit monoclonal antibodies, 1:1,000, Cell Signaling,

Beverly, MA, USA), PECAM-1 (rabbit polyclonal anti-PECAM-1, 1:1,000, Abcam,

Cambridge, MA, USA) and intercellular adhesion molecule-2 (ICAM-2) (rabbit polyclonal

anti-ICAM-2, 1:200, Santa Cruz, Dallas, Texas, USA). Antibody against β-actin (rabbit

monoclonal anti-β-actin, 1:2,000, Cell Signaling) was used as a loading control. For

detection, the membrane was incubated with anti-rabbit IgG secondary antibodies

conjugated with horseradish peroxidase (1:2,000, Cell Signaling). Bands were visualized

using SuperSignal West Pico Chemiluminescent substrate (ThermoScientific Pierce,

Rockford, IL, USA).

Annexin V staining

Dual staining with FITC–annexin V and propidium iodide (PI) was performed to detect cells

undergoing apoptosis using an annexin V–FITC kit (BD Biosciences) as we described

previously (10). Single lung cells were first stained with endothelial marker CD31. After

washing with PBS, labeled cells were resuspended in annexin V-binding buffer containing

FITC-conjugated annexin V. PI was then added into cells and incubated on ice for 10 min.

Nonspecific binding was blocked by pre-incubating cells with rat IgG (10 mg/mL) and anti-

FcII/III. Cells were analyzed on a LSRII machine (Becton Dickinson, Franklin Lakes, New

Jersey, USA) within 1 h. Viable cells were defined by FITC– and PI– population. Early

apoptotic cells were defined by FITC+ and PI– population.

In vitro co-culture of ECs and MDSCs

ECs were resuspended and adjusted to density at 5×104 cells/mL. MDSCs after MACS

sorting were used immediately and the cell density was adjusted to 5×106 cells/mL. One

hundred microliters of MDSCs and 100 μL of ECs were mixed, and seeded into a well of

96-well plates. Seventy-two hours later, unattached MDSCs were removed by washing with

PBS, and the number of attached ECs was counted. Morphologically, MDSCs are much

smaller than ECs.

BrdU incorporation

Immunofluorescent staining of incorporated bromodeoxyuridine (BrdU) was also performed

on ECs after coculture with MDSCs for 3 days and washing off the MDSCs by PBS,

followed by flow cytometric analysis. BrdU incorporation was performed using the BrdU

Flow Kit (BD Biosciences) as we previously described (10). Briefly, BrdU was added to

cells at a final concentration of 10 μmol/L. One hour later, cells were collected and fixed.

After permeabilisation, cells were incubated with DNase I at 37°C for 1 h, followed by

labeling with anti-BrdU antibody for 20 min at room temperature. Cells were then analyzed

by flow cytometry.
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In vivo matrigel plug assay with ECs or MDSCs

This assay was performed according to established methods with minor modifications (25).

ECs or MDSCs were collected separately. After washed with PBS, 1×106 ECs or 2×106

MDSCs were centrifuged and resuspended in 40 μL PBS and mixed with 500 μL Matrigel

Basement Membrane Matrix (BD Biosciences) containing 15 units of heparin (Sigma-

Aldrich). The cell-matrigel-mixture was then injected subcutaneously into the abdomen of

3-month old lal+/+ mice. For the B16 melanoma tumor model, 1×106 MDSCs and 1×105

B16 melanoma cells were mixed in 500 μL matrigel, and then injected subcutaneously into

lal+/+ mice. After 10 days, the mice were sacrificed and plugs were harvested from

underneath the skin. The plugs were fixed, embedded, sectioned, stained with H&E, and

then examined using microscopy. To visualize capillaries, samples were

immunohistochemically stained with anti-CD31 antibody. For hemoglobin analysis, the

matrigel plugs were removed after 10 days and homogenized in 130 μL de-ionized water.

After centrifugation, the supernatant was harvested, and then used in the Drabkin assay

(Sigma-Aldrich) to measure hemoglobin concentration. Stock solutions of hemoglobin are

used to generate a standard curve. Results are expressed relative to total protein in the

supernatant.

T cell proliferation assay and lymphokine measurement by ELISA

CD4+ T cells were prepared and CFSE labeled as we previously described (26). Labeled

CD4+ T cells were co-cultured with ECs in 96-well plates pre-coated with anti-CD3

monoclonal antibody (mAb) (2 μg/mL) and anti-CD28 mAb (5 μg/mL) at 37°C, 5% CO2 for

4 d. The ratio of ECs/CD4+ T cells was 1:10. Proliferation of CD4+ T cells was evaluated as

CFSE dilution by FACS. The expression level of IL-4, IL-10, IFN-γ, and IL-17 in the

supernatants of the culture medium was measured using ELISA kits (BD Biosciences).

Real-time RT-PCR

Total RNAs from ECs or Ly6G+ cells were purified using the Qiagen total RNA purification

kit (Qiagen, Valencia, CA, USA). Quantitative (q)RT-PCR was performed as described

previously (20). Analysis was performed by the 2−ΔΔCT method. Primers of mMCP-1,

mCCR2, mIL-6, mTNF-α, VEGF and GAPDH for real-time PCR were described previously

(20).

Flow Cytometry Analysis

After 7 days of culture, ECs were harvested and washed with PBS. To detect VEGFR-2

expression level, cells were incubated with APC-conjugated anti-mouse VEGFR-2 antibody

(eBioscience, San Diego, CA, USA). For flow cytometry analysis, ≥10,000 cells were

acquired and scored using a LSRII machine (Becton Dickinson). Data were processed using

the CellQuest software program (Becton Dickinson).

ROS Measurement

The reactive oxygen species (ROS) level in ECs was measured by flow cytometry as we

previously described (13). Briefly, ECs were harvested, washed, and stained with 2 μmol/L

2′, 7′-dichlorofluorescein diacetate (Invitrogen) at 37°C for 30 min. After PBS wash, the
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ROS level was analyzed using a LSRII machine (Becton Dickinson). In a ROS inhibition

assay, the antioxidant N-Acetyl-L-cysteine (NAC) (Sigma-Aldrich) was added to ECs twice

per day for 3 days, followed by further analysis.

Statistics

Data were expressed as mean ± SD. Differences between two treatment groups were

compared by Student’s t-test. When more than two groups were compared, one-way

ANOVA with post-hoc Newman-Keul’s multiple comparison test was used. Results were

considered statistically significant when P < 0.05. All analyses were performed with

GraphPad Prism 5.0 (GraphPad, San Diego, CA, USA).

Results

LAL deficiency in ECs led to increased transendothelial migration of MDSCs

Transendothelial migration of leukocytes is a critical step in the inflammatory response,

during which ECs participate in regulating leukocyte transmigration from the vasculature to

the site of inflammation (27). Because we have previously reported that LAL deficiency

results in severe infiltration of MDSCs in multiple organs (1, 10, 12, 28, 29), the role of ECs

in MDSC infiltration was investigated. Transwell assay was performed to determine MDSC

transmigration across the endothelial monolayer formed by ECs isolated from lungs of lal+/+

or lal−/− mice. ECs were seeded into Transwell upper chambers and grown to confluence.

Freshly isolated bone marrow-derived Ly6G+ cells (MDSCs) from lal+/+ or lal−/− mice were

labeled with CMFDA and then loaded on the EC monolayers. In lal−/− mice, since almost all

Ly6G+ cells are positive for CD11b, which showed T cell suppression, Ly6G antibody was

used for purification of Ly6G+CD11b+ cells (30). Six hours later, the number of Ly6G+ cells

that had migrated to the lower chamber was counted. As shown in Figure 1A, when lal+/+

Ly6G+ cells were added to the EC monolayer, lal−/− ECs showed increased permeability,

with more Ly6G+ cells in the lower chamber, than that of lal+/+ ECs. In addition, we

repeated the experiments using lal−/− Ly6G+ cells to migrate across lal+/+ or lal−/− EC

monolayers, and there were more lal−/− Ly6G+ cells migrating to the lower chamber through

lal−/− ECs than lal+/+ ECs. These data suggest that 1) the increased permeability of lal−/−

ECs is a potential mechanism of increased Ly6G+ cell infiltration in the lal−/−mice and 2)

lal−/− Ly6G+ cells possess a stronger ability to transmigrate the pulmonary EC monolayer.

As a matter of fact, lal−/− Ly6G+ cell and lal−/− EC combination showed three times more

permeability than that of lal+/+ Ly6G+ cell and lal+/+ EC combination. In addition to Ly6G+

cells, lal−/− CD4+ T cells also showed increased ability of transendothelial migration, with

similar results as Ly6G+ cells (Figure 1B).

A number of adhesion molecules have been implicated in the process of leukocyte

transendothelial migration (27). It is plausible that increased expression of adhesion

molecules in lal−/− ECs facilitates Ly6G+ cell transmigration across the endothelial

monolayer. Among several tested proteins, Western blot analysis showed that expression of

PECAM-1 and ICAM-2 was both elevated in lal−/− ECs (Figure 1C). To assess functional

roles of PECAM-1 in ECs for Ly6G+ cell transendothelial migration, siRNA transfection

was performed to knockdown PECAM-1 expression in ECs. Results of Transwell assay
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showed that there were less migrated Ly6G+ cells in the groups of lal+/+ and lal−/− ECs with

PECAM-1 siRNA transfection than their counterparts with control siRNA transfection

(Figure 1D). Furthermore, ECs were treated with anti-PECAM-1 neutralizing antibodies. As

Figure 1E demonstrated, the transmigration of Ly6G+ cells across the EC monolayer was

reduced in the groups of ECs with anti-PECAM-1 antibody treatment compared to those

treated with control IgG. Taken together, increased expression of PECAM-1 in lal−/− ECs

contributed to enhanced Ly6G+ cell transmigration.

Moreover, chemokines secreted by ECs are crucial in recruiting monocytes into the vessel

wall, among which MCP-1 plays a major role (31, 32). In lal−/− ECs, the mRNA level of

MCP-1 was up-regulated by a Real-time PCR analysis (Figure 1F). Accordingly, expression

of MCP-1 receptor - CCR2 was increased in lal−/− Ly6G+ cells (Figure 1G). To examine

whether MCP-1 secreted by lal−/− ECs facilitated Ly6G+ cell migration, transwell study was

performed with ECs pre-treated with anti-MCP-1 neutralizing antibodies. As shown in

Figure 1H, fewer Ly6G+ cells transmigrated through ECs treated with anti-MCP-1 antibody

than those treated with control IgG. In addition, the mRNA levels of IL-6 and TNFα were

increased in lal−/− ECs (Figure 1F), both of which have been reported to be involved in EC

permeability (33, 34). After ECs were pre-treated with anti-IL-6 or anti-TNFα antibodies to

neutralize cytokines, Ly6G+ cell transmigration was not significantly inhibited. However,

combination of all three neutralizing antibodies (anti-MCP-1, anti-IL-6 and anti-TNFα

antibodies) showed a stronger blocking on Ly6G+ cell transmigration (Figure 1H).

Therefore, chemokines and cytokines, especially MCP-1, secreted by lal−/− ECs are

responsible for mediating Ly6G+ cell transendothelial migration.

LAL deficiency influenced EC angiogenic functions

Angiogenesis is a feature of chronic inflammation, a process ECs actively participate in (3).

Three studies were designed to assess angiogenic functions. Firstly, an important aspect of

angiogenesis involves the formation of capillary-like tubes by ECs (35). To determine

whether LAL deficiency influences tube formation, in vitro matrigel tube formation assay

was performed. As shown in Figure 2A, 6 h after seeding on matrigel, lal−/− ECs formed

significantly less completed and poorly connected tube networks than those of lal+/+ ECs.

Statistical results showed that there was more than 50% decrease in the total tube lengths in

lal−/− ECs compared with those of lal+/+ ECs, demonstrating that LAL deficiency impaired

EC tube formation in vitro. Interestingly, tube networks formed by lal−/− ECs showed a

delayed disappearance compared with those formed by lal+/+ ECs at 12h and 24h.

Secondly, we investigated the effect of LAL deficiency on EC-mediated in vivo

angiogenesis by in vivo matrigel plug assay. Fourteen days after subcutaneous injection of

EC-matrigel-mixture, the mice were sacrificed and plugs were harvested, sectioned, and

stained with H&E. The presence of capillaries in the matrigel was further detected by

immunohistochemical (IHC) staining with anti-CD31 antibody. Results showed that

administration of lal+/+ ECs induced formation of vessel-like structures and the presence of

erythrocytes were evidenced in the lumen (Figure 2B, see arrows), while administration of

lal−/− ECs led to formation of disorganized cell clusters, demonstrating that LAL deficiency

in ECs impaired their in vivo angiogenic function. As a control, plugs without ECs showed
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no vessel formation or CD31+ cells (data not shown), confirming that the above

observations were from extrinsic ECs. In addition, the hemoglobin content (a surrogate

marker of perfusion) was significantly lowered in the plugs mixed with lal−/− ECs (Figure

2C).

Thirdly, endothelial cell migration is an essential component of angiogenesis (36). To test

whether LAL deficiency in ECs affects their migration ability, we performed the in vitro

wound healing assay. ECs were treated with mitomycin C to eliminate the potential effects

of EC proliferation. As shown in Figure 2D, 15 h after creating the scratch, lal−/− ECs

demonstrated increased migration compared with that of lal+/+ ECs, evidenced by a

significant reduction in the wound area lacking cells. This indicates that LAL deficiency

facilitates EC migration.

LAL deficiency facilitated EC proliferation

Cell proliferation is essential for ECs to adequately perform their functions. Therefore, the

effect of LAL deficiency on EC proliferation was determined. CD31+ ECs from the lungs of

lal+/+ or lal−/− mice were isolated and counted. There were significantly more CD31+ cells

in the lungs of lal−/− mice than those in the lungs of lal+/+ mice (Figure 3A). When cultured

in vitro, lal−/− ECs demonstrated increased proliferation compared with that of lal+/+ ECs

(Figure 3B). The BrdU incorporation study further supported increased proliferation of

lal−/− ECs (Figure 3C). Since apoptosis may contribute to the numbers of ECs, we further

examined the apoptotic activity in isolated lung ECs by Annexin V staining. The percentage

of Annexin V positive cells in lung CD31+ cells was compared between lal+/+ and lal−/−

mice. As shown in Figure 3D, apoptosis in lal−/− lung CD31+ cells was decreased compared

with those of lal+/+ mice. The abnormality of lal−/− EC proliferation is a complicated

process, which can be influenced by environmental factors. In addition to the above intrinsic

defects in ECs, we also investigated the effect of blood plasma on EC proliferation. Plasma

was prepared from both lal+/+ and lal−/− blood, and added into culture medium (20%

plasma) of ECs. Seventy-two hours later, lal−/− plasma exerted a greater stimulatory effect

on both lal+/+ and lal−/− EC proliferation, compared with that of lal+/+ plasma (Figure 3E).

Since lal−/− ECs showed more sensitivity to plasma treatment, the potential mechanism

contributing to EC growth was investigated. VEGF has been found to have various functions

on ECs, the most prominent of which is the stimulation of proliferation and angiogenesis

(37, 38). The VEGF level was indeed increased in lal−/− plasma (data not shown).

Therefore, the level of its receptor VEGFR2 was examined in lal+/+ vs. lal−/− ECs. Flow

cytometry analysis showed that the expression level of VEGFR2 was increased in lal−/− ECs

(Figure 3F). After VEGFR2 knockdown in ECs, the stimulatory effect of lal−/− plasma on

EC proliferation was impaired (Figure 3G). These results indicate that both intrinsic defects

and environmental factors contribute to abnormal proliferation of lal−/− ECs.

LAL deficiency in ECs suppressed T cell proliferation

Increased T cell permeability across the ECs monolayer (Figure 1B) triggered us to further

investigate ECs’ effects on T cell proliferation and functions. ECs have been found to

function as antigen presentation cells, leading to activation of T cells (39, 40). We have

previously reported that LAL deficiency impaired T cell proliferation and function in lal−/−
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mice (26). Although the intrinsic defect and lal−/− MDSC suppression contribute to T cell

paucity (26), whether lal−/− ECs participate in T cell suppression has not been investigated.

CFSE-labeled lal+/+ CD4+ T cells were cultured in vitro and stimulated with anti-CD3 mAb

plus anti-CD28 mAb in the presence or absence of lal+/+ or lal−/− ECs for 4 d. Proliferation

of CD4+ T cells was evaluated by CFSC dilution (cell division). As demonstrated in Figure

4A, lal−/− ECs showed inhibition on proliferation of lal+/+ CD4+ T cells after anti-CD3 mAb

plus anti-CD28 mAb stimulation, whereas lal+/+ ECs had no effects on CD4+ T cell

proliferation. In the PBS control group, no proliferation was observed. Furthermore, the

secretion of CD4+ T lymphokines, e.g. IFN-γ (Th1), IL-4 and IL-10 (Th2) was also inhibited

by lal−/− ECs, while the secretion of Th17 lymphokine IL-17 remained unchanged (Figure

4B). Therefore, lal−/− ECs suppressed both T cell proliferation and lymphokine secretion.

Interaction with MDSCs leads to EC dysfunctions

Our previous publications have demonstrated that the MDSC population in lal−/− mice was

significantly increased in multiple organs (10-12). The synergism between Ly6G+ cells and

ECs in the lal−/− mice has been implicated in Figure 1A, in which not only lal−/− ECs had

enhanced permeability for Ly6G+ cells, but also lal−/− Ly6G+ cells had greater

transmigration capability than that of lal+/+ Ly6G+ cells. It is intriguing to determine if lal−/−

Ly6G+ cells influence EC proliferation and functions. To test whether Ly6G+ cells

contribute to angiogenesis, the EC tube formation assay was performed in the presence of

Ly6G+ cells. In this study, both lal+/+ and lal−/−Ly6G+ cells facilitated lal−/− EC tube

formation (Figure 5A). Despite impaired tube formation in the absence of Ly6G+ cells,

lal−/− ECs co-cultured with lal−/− Ly6G+ cells formed more complete tube networks than

those with lal+/+ Ly6G+ cells, suggesting that lal−/− Ly6G+ cells exert proangiogenic effects

on ECs. However, when ECs were co-cultured with macrophages (F4/80+ and CD11b+) that

were isolated from lal+/+ or lal−/− mice, lal+/+ macrophages stimulated tube formation on

ECs, while lal−/− macrophages did not (Figure 5B). This difference indicates differential

abilities between lal+/+ and lal−/− macrophages to stimulate EC tube formation. In a similar

study, both lal+/+ and lal−/− CD4+ T cells showed no effect on EC tube formation (Figure

5B).

In the in vivo matrigel plug assay, matrigel mixed with either lal+/+ or lal−/− Ly6G+ cells

were injected into lal+/+ mice subcutaneously. Fourteen days after implantation, matrigel

plugs containing lal−/− Ly6G+ cells showed more CD31+ cells than those containing lal+/+

Ly6G+ cells. H&E staining results revealed newly formed microvessels in the plugs

containing lal−/− Ly6G+ cells (Figure 5C, see arrows). The effect of Ly6G+ cells on

angiogenesis in vivo was further examined in a B16 melanoma tumor model, a system that

was recently established by us (14). lal+/+ or lal−/− Ly6G+ cells were isolated and mixed

with B16 melanoma cells in matrigel. The mixture was subcutaneously injected into wild

type recipient mice for tumor growth study. IHC staining showed that more CD31+ cells

appeared in matrigel plugs containing lal−/− Ly6G+ cells than those containing lal+/+ Ly6G+

cells (Figure 5D). The underlying mechanism of this proangiogenic activity was further

investigated. The mRNA level of VEGF, a crucial factor in regulating EC angiogenesis, was

up-regulated in lal−/− Ly6G+ cells (Figure 5E). On the other hand, inhibition of VEGF

receptor 2 (VEGFR2) expression by siRNA knockdown in ECs decreased the tube-forming
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activity by lal−/− Ly6G+ cells (Figure 5F), suggesting that VEGF secreted by lal−/− Ly6G+

cells is responsible for the pro-angiogenic activity.

The effect of Ly6G+ cells on EC proliferation was also determined. ECs were co-cultured

with lal+/+ or lal−/− Ly6G+ cells for 72 h, and the numbers of ECs were counted. As shown

in Figure 5G, ECs co-cultured with lal−/− Ly6G+ cells showed more proliferative cells than

those with lal+/+ Ly6G+ cells. lal−/− ECs co-cultured with lal−/− Ly6G+ cells showed the

highest proliferation, which was consistent with Figure 3A, in which proliferation of CD31+

cells was increased in lal−/− mice. This observation was further supported by BrdU

incorporation assay, showing significant increase of BrdU incorporation when ECs were co-

cultured with lal−/− Ly6G+ cells (Figure 5H).

Over-activation of the mTOR pathway is responsible for EC dysfunctions

In lal−/− mice, over-activation of the mTOR pathway has been identified in bone marrow-

derived MDSCs (13, 14, 17). Interestingly, Western blot analysis also detected increased

level of phosphorylated-S6, a downstream target protein of mTOR (41), in lal−/− ECs

(Figure 6A). Knocking down mTOR expression in lal−/− ECs by siRNA transfection showed

significant decrease of phosphorylated-S6 compared with lal−/− ECs transfected with control

siRNA (Figure 6B). These results implied pathogenic roles of mTOR over-activation in

lal−/− ECs. To see if the mTOR pathway plays roles in lal−/− EC dysfunctions, the effect of

mTOR inhibition in lal−/− ECs on Ly6G+ cell transendothelial migration was analyzed by

Transwell assay. After ECs were transfected with mTOR or control siRNA for 48 h, Ly6G+

cells were added to the lal+/+ or lal−/−EC monolayer. Six hours later, the number of Ly6G+

cells in the lower chamber was significantly less across both lal+/+ and lal−/− ECs

transfected with mTOR siRNA than those across ECs with control siRNA transfection

(Figure 6C), suggesting that mTOR inhibition in ECs reduces Ly6G+ cell transendothelial

migration. Furthermore, the in vitro wound healing assay showed delayed migration towards

the scratch in lal−/− ECs with mTOR siRNA transfection at 12 h and 18 h after creating the

scratch, with a significant increase of distance in the wounding area (Figure 6D), indicating

mTOR inhibition impairs the increased migration of lal−/− ECs. Finally, mTOR inhibition in

lal−/− ECs reversed their suppressive activity on T cells. As demonstrated in Figure 6E,

lal−/− ECs with control siRNA transfection showed inhibition on T cell proliferation,

whereas lal−/− ECs with mTOR siRNA transfection displayed reduced inhibition on T cell

proliferation. lal−/− ECs with mTOR siRNA transfection also reversed decreased secretion

of IL-4, IL-10 and IFN-γ by T cells (Figure 6F).

Over-production of ROS mediates the over-activation of mTOR pathway in EC dysfunction

ROS over-production has been observed, and rapamycin treatment decreased the ROS level

in lal−/− Ly6G+ MDSCs (13, 17). Similarly, the ROS level was also increased in lal−/− ECs,

and rapamycin treatment suppressed ROS production in lal−/− ECs (Figure 7A). To see if

the ROS over-production mediates the mTOR signaling in EC dysfunctions, ECs were

treated with antioxidant NAC to neutralize ROS. In the transendothelial migration study,

NAC pre-treatment of ECs significantly reduced both lal+/+ and lal−/− Ly6G+ cell migration

across the ECs monolayer (Figure 7B). The same EC treatment also improved tube

formation of lal−/− ECs (Figure 7C), and delayed lal−/− EC migration towards the scratch
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with a significant increase of distance in the wounding area in the in vitro wound healing

assay (Figure 7D). NAC treatment reduced lal−/− EC proliferation (Figure 7E). Finally,

NAC pre-treatment of lal−/− ECs reversed their suppressive activity on T cell proliferation

(Figure 7F). Taken together, these results support a concept that ROS over-production

serves as a mechanism mediating mTOR over-activation in lal−/− EC dysfunctions.

Discussion

LAL is a key enzyme in the metabolic pathway of neutral lipids, and the relationship

between LAL and inflammation has been well documented (1, 10-14, 28). Genetic ablation

of the lal gene in mice has resulted in a systemic increase of MDSCs, causing severe

inflammation and pathogenesis in multiple organs (10). ECs, the major components of blood

vessels, are actively involved in inflammation and many other pathogenic conditions.

However, the effects of LAL deficiency on EC functions remain to be explored. The major

new findings of the present study were that LAL deficiency in ECs 1) enhanced the

transendothelial migration of MDSCs, with a concomitant increase of PECAM-1 and

ICAM-2 protein levels, 2) impaired in vitro tube-forming capability and in vivo

angiogenesis, but increased migration, 3) facilitated cell proliferation, paralleled with

reduced apoptosis, and 4) suppressed T cell proliferation and function. The potential

mechanisms underlying EC dysfunction were identified, including the interaction with

MDSCs, intrinsic over-activation of the mTOR pathway, and cellular overproduction of

ROS. lal−/− MDSCs were found to increase transmigration across EC monolayers, promote

in vivo angiogenesis, and EC tube formation and proliferation. The mTOR pathway was

over-activated in lal−/− ECs, and inhibition of mTOR in lal−/− ECs partially reversed their

dysfunctions, including reducing transmigration of MDSCs, EC migration, and suppression

of T cell proliferation and function, which was mediated by decreasing ROS production.

Transendothelial migration of leukocytes, or diapedesis, is a critical step in the inflammatory

response. The preceding steps of leukocyte rolling, activation, adhesion, and locomotion are

all reversible. However, once the leukocytes commit to diapedesis, they do not return to the

circulation, at least not as the same cell type (27, 42). Recent studies have shown that

transendothelial migration was promoted by multiple endothelium-derived inflammatory

chemokines (43, 44). Because we previously observed increased MDSC accumulation in the

lungs of lal−/− mice (1, 10, 12), we hypothesized that LAL deficiency in ECs would enhance

transendothelial migration of MDSCs. In consistence with our hypothesis, MDSCs migrated

more efficiently across lal−/− ECs than lal+/+ ECs. In addition, lal−/− MDSCs showed a

greater transmigration capability than that of lal+/+ MDSCs (Figure 1A). There was a more

than 3-fold increase in the transmigration of lal−/− MDSCs across lal−/− ECs than that of

lal+/+ MDSCs across lal+/+ ECs, which mimicked the pathological condition of lal−/− mice.

Our finding demonstrated that in lal−/− mice, not only myeloid cells but also pulmonary ECs

contribute to the increased transendothelial migration, which may explain the increased

accumulation of myeloid cells in the bronchoalveolar lavage fluid of lal−/− mice (10).

Several mechanisms are involved in the process of transendothelial migration, among which

is the hemophilic interaction of leukocyte PECAM with endothelial PECAM (27).

PECAM-1 is an immunoglobulin superfamily member concentrated at the borders of ECs,
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as well as diffusely on platelets and leukocytes. Study has shown that when PECAM-

PECAM interactions are blocked, leukocytes are arrested tightly adherent to the apical

surface of the cell (27, 45). In the present study, we found that PECAM-1 protein level was

increased in lal−/− ECs (Figure 1C) and inhibition of PECAM-1 in ECs by siRNA

transfection or neutralizing antibodies led to reduced transendothelial migration of lal−/−

MDSCs (Figure 1D-E), which were consistent with previous findings, suggesting that the

elevated expression of PECAM-1 in lal−/− ECs is critical for the enhanced transendothelial

migration. We also found that ICAM-2 protein level was increased in lal−/− ECs, whose

deletion has been reported to inhibit transmigration of neutrophils (46, 47). In addition to

adhesion molecules in facilitating transendothelial migration of leukocytes, chemokines play

an important role in recruiting monocytes, neutrophils, and lymphocytes to the vascular

endothelium. MCP-1, acting through its receptor CCR2, has been demonstrated to recruit

monocytes into foci of inflammation (48). The increased level of MCP-1 in lal−/− ECs and

CCR2 in lal−/− Ly6G+ cells was observed (Figure 1F-G). Pre-treatment of ECs with anti-

MCP-1 neutralizing antibodies reduced Ly6G+ cell transmigration by about 50% (Figure

1H). Furthermore, increased production of cytokines IL-6 and TNFα in lal−/− ECs has been

observed, and combination of all three neutralizing antibodies further blocked Ly6G+ cell

transmigration (Figure 1F and 1H), demonstrating up-regulated production of chemokines

and cytokines in lal−/− ECs is responsible for mediating Ly6G+ cell transendothelial

migration.

Angiogenesis, the growth of new capillaries from preexisting blood vessels, is a feature of

chronic inflammation. ECs are the principle cell population participating in this complex

process, which involves EC activation, disruption of vascular basement membranes,

migration and proliferation of ECs, and the subsequent formation and maturation of blood

vessels (49). Failure of ECs to adequately perform their angiogenesis-related functions

would lead to an imbalance of the angiogenic process, resulting in the pathogenesis of

numerous disorders (50). An important aspect of angiogenesis involves the organization of

ECs into three-dimensional tube-like structures. Our results showed that LAL deficiency

enhanced EC migration (Figure 2D), impaired EC tube formation (Figure 2A), and

decreased in vivo angiogenesis by matrigel plug assay (Figure 2B-C).

During the process of angiogenesis, EC proliferation is required to provide the necessary

number of cells for new blood vessel formation (51). However, increased EC proliferation is

often related to pathological conditions. In lal−/− mice, it seems that both intrinsic defects

and environmental factors contribute to EC proliferation. We observed that there were more

pulmonary CD31+ cells, with significantly decreased apoptosis (Figure 3A and 3D). After in

vitro culture, lal−/− ECs showed enhanced proliferation (Figure 3B-C). Furthermore, EC

proliferation was greatly increased in the presence of plasma harvested from lal−/− mice.

lal−/−ECs co-cultured with plasma from lal−/− mice, a mimic of the in vivo situation of lal−/−

mice, showed the greatest proliferation compared with other groups (Figure 3E), which was

in agreement with the in vivo observation that more CD31+ cells existed in the lungs of

lal−/− mice (Figure 3A). In addition, the up-regulated expression of VEGFR2 in lal−/− ECs

was responsible for their higher response to the environmental factors since VEGFR2

knockdown in lal−/− ECs impaired the stimulatory effect of lal−/− plasma on their
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proliferation (Figure 3 F-G). Collectively, the above observations suggest that LAL

deficiency facilitates EC proliferation and inhibits EC apoptosis, despite the fact that lal−/−

ECs had a poor capability of tube formation (Figure 2A) and in vivo capillary formation

(Figure 2B).

ECs, which form the interface between the blood and the underlying tissue, are uniquely

positioned for frequent contact with circulating T cells (23). In lal−/− mice, impairment in T

cell proliferation and function has previously been reported (28). A recent study has found

that direct cell-cell contact between ECs and T cells is required for EC-induced T cell

proliferation (40). In our study, lal−/− ECs showed inhibition on T cell proliferation and

lymphokine secretion (Figure 4), which is an additional cellular mechanism of the impaired

T cell proliferation in lal−/− mice.

In lal−/− mice, one major manifestation is the massive expansion and infiltration of MDSCs

into multiple organs (1, 2, 10, 12, 52). Therefore, we speculate that MDSCs from lal−/− mice

interact with ECs and influence ECs’ functions. Previously, MDSCs isolated from mouse

tumors have been reported to induce in vitro angiogenesis by tube formation assay via

producing angiogenic factors, including VEGF and bFGF (9). In the present study, we found

that the tube-forming capability of lal−/− ECs was increased after co-culturing with lal−/−

MDSCs (Figure 5A), and the pro-angiogenic effects of lal−/− MDSCs was mediated by

increased production of VEGF (Figure 5E-F), suggesting that lal−/− MDSCs had the similar

pro-angiogenic effects as tumor-derived MDSCs. The in vivo matrigel plug assay further

confirmed the pro-angiogenic activity of lal−/− MDSCs (Figure 5C-D). Therefore, in lal−/−

mice, compared with ECs’ intrinsic angiogenic defect, the pro-angiogenic activity of lal−/−

MDSCs contribute to the angiogenesis required for the process of inflammation. lal−/−

MDSCs also facilitated EC proliferation (Figure 5C-D), which explains why more CD31+

cells existed in the lungs of lal−/− mice (Figure 3A). Taken together, MDSC expansion

contributes to EC dysfunctions in lal−/− mice.

The mTOR pathway is a key regulator of cell growth and proliferation. Increasing evidence

suggests that its dysregulation is associated with human diseases, including metabolic

disease, neurodegeneration, aging, cancer, diabetes, and cardiovascular disease (53, 54).

mTOR, defined as a regulatory kinase in ECs, plays an important role in EC survival,

migration, and proliferation, and PI3K/AKT/mTOR signaling pathway may regulate

PECAM-1 expression in mEC/EB derived ECs (16, 55). In the present study, we found that

the phosphorylation level of mTOR downstream target S6 was significantly increased in

lal−/− ECs, which can be reversed after mTOR knocking down by siRNA transfection.

Knocking down mTOR in lal−/− ECs partially reversed EC dysfunctions, including

decreasing the enhanced transmigration of MDSCs across lal−/− ECs, impairing the

increased lal−/− ECs migrating capability and proliferation, and relieving the lal−/− ECs

suppression on T cell proliferation and function (Figure 6C-F). We have recently reported

that over-activation of the mTOR signaling leads to ROS over-production in lal−/− MDSCs

(13). In the present study, ROS over-production was also observed in lal−/− ECs, which was

reduced by mTOR inhibitor rapamycin. Neutralization of ROS by antioxidant NAC in lal−/−

ECs reversed their dysfunctions (Figure 7), similar to those observed in mTOR studies.

Therefore, ROS over-production serves as a major mechanism to mediate the mTOR
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pathway in EC dysfunctions. The above findings provide a mechanistic basis for targeting

MDSCs or mTOR or ROS to rejuvenate EC functions in LAL deficiency-related diseases.

Clinically, LAL deficiency results in inherited recessive in-born error metabolic diseases:

Wolman disease as the infantile on-set and cholesteryl ester storage disease (CESD) as the

late on-set. Our lal−/− mice represent Wolman disease biochemically and CESD

physiologically. Both enzyme therapy using recombinant human LAL (hLAL) protein and

gene therapy using adenovirus-mediated hLAL expression have been successfully tested in

lal−/− mouse model (56-58). It is conceivable that these strategies can be used to treat EC

dysfunctions. In summary, our studies strongly support a concept that neutral lipid

metabolism controlled by LAL plays a critical role in maintaining ECs’ normal functions by

regulation of MDSCs and the mTOR pathway.
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Figure 1. LAL deficiency in ECs leads to increased transendothelial migration of Ly6G+ cells
(A) Transwell assay was performed to determine Ly6G+ cells transmigration across the

endothelial monolayer formed by lal+/+ or lal−/− ECs. Six hours after seeding Ly6G+ cells

on the EC monolayer, the number of Ly6G+ cells that have migrated to the lower chamber

was counted. Bars represent 250 μm. (B) CD4+ T cell transmigration across the endothelial

monolayer formed by lal+/+ or lal−/− ECs was examined. Six hours later, the number of

transmigrating CD4+ T cells was counted. (C) Expressions of PECAM-1 and ICAM-2 in

ECs were determined by Western blot analysis. β-actin was used as control. Representative

blots of 4 individual experiments were shown. (D) Transwell assay was performed to

determine Ly6G+ cells transmigration across the ECs that were transfected with PECAM-1

siRNA; (E) Transwell assay was performed to determine Ly6G+ cells transmigration across

the ECs that were pre-treated with anti-PECAM-1 neutralizing antibodies or control IgG; (F)

Real-time PCR analysis of mRNA expression levels of MCP-1, IL-6 and TNFα in lal+/+ vs.

lal−/− ECs. The relative gene expression was normalized to GAPDH mRNA, and analysis

was performed by the 2−ΔΔCT method. (G) Real-time PCR analysis of mRNA expression

level of CCR2 in lal+/+ vs. lal−/− Ly6G+ cells. The relative gene expression was normalized

to GAPDH mRNA, and analysis was performed by the 2−ΔΔCT method. (H) To block

chemokines and cytokines, ECs were pre-treated with 10 μg/mL neutralizing antibody

against MCP-1, IL-6, TNF-α individually or in combination, or control IgG for 1 h. Six

hours after seeding Ly6G+ cells on the EC monolayer, the number of migrating Ly6G+ cells

was counted. In all above experiments, data were expressed as mean ± SD; n = 4. *P < 0.05,

**P < 0.01.
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Figure 2. LAL deficiency influences EC angiogenic functions
(A) In vitro matrigel tube formation was performed to compare the tube-forming capability

between lal+/+ and lal−/− ECs. Top: representative micrographs of matrigel tube formation

in ECs from lal+/+ and lal−/− mice at different time interval. Bottom: statistical analysis of

cumulative tube lengths at 6 h. Data were normalized to lal+/+ ECs and expressed as mean

±SD; n = 4. *P < 0.05. (B) In vivo angiogenesis was assessed by matrigel plug assay.

Matrigel plugs containing ECs isolated from lungs of lal+/+ or lal−/− mice were implanted

into lal+/+ mice. Plugs were harvested for H&E and immunohistochemical staining 10 d

after implanting in vivo. Representative microphotographs of matrigel plug sections stained

with H&E and CD31 antibody were shown. Original magnification ×400. (C) Perfusion of

matrigel plugs was determined by measuring the hemoglobin content. Data were normalized

to lal+/+ ECs and expressed as mean ±SD; n = 4, **P < 0.01; (D) The in vitro wound healing

assay was conducted to determine EC migration in the presence of mitomycin C. Left:

Representative pictures of wound healing assay of ECs from lal+/+ or lal−/− mice at the

beginning and end of incubation (0 and 15h, respectively). The dotted lines define the areas

lacking cells. Right: Quantification of distance from one end to the other end of the wound

area. Data were normalized to lal+/+ ECs at 0 h and expressed as mean ±SD; n = 4. *P <

0.05, **P < 0.01. Bars represent 500 μm.
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Figure 3. LAL deficiency facilitates EC proliferation
(A) Comparison of the number of CD31+ cells in the lungs of lal+/+ or lal−/− mice. Lung

cells from lal+/+ or lal−/− mice were purified by anti-CD31 microbeads and counted. (B)

ECs after 3 days’ culture were harvested, and the number was compared between lal+/+ and

lal−/− mice. (C) The percentage of BrdU incorporation into lal+/+ or lal−/− ECs were

analyzed by flow cytometry. (D) The percentage of Annexin V positive cells in lung CD31+

cells from lal+/+ or lal−/− mice. (E) ECs were cultured in medium containing 20% plasma

from lal+/+ or lal−/− mice for 72 h, and the cell number was counted afterwards. (F) Flow

cytometry analysis of VEGFR2 expression in lal+/+ vs. lal−/− ECs. Data were normalized to

lal+/+ ECs. (G) ECs transfected with VEGFR2 or control siRNA were cultured in medium

containing 20% plasma from lal+/+ or lal−/− mice for 72 h, and the cell number was counted

afterwards. In all above experiments, data were expressed as mean ± SD; n = 3-4. *P < 0.05,

**P < 0.01.
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Figure 4. ECs from lal−/− mice suppress T cell proliferation and function
(A) CFSE-labeled lal+/+ CD4+ T cells were stimulated with anti-CD3 mAb plus anti-CD28

mAb for 4 days in the presence or absence of ECs from the lungs of lal+/+ or lal−/− mice at

10:1 ratio between CD4+ T cells: ECs. The proliferation of labeled CD4+ T cells was

analyzed by flow cytometry. Peaks represent cell division cycles. PBS was used as a

negative control. (B) The secretions of IL-4, IFN-γ, IL-10, and IL-17 of CD4+ T cells in the

culture medium were measured by ELISA analysis. Data were expressed as mean ± SD; n =

3~4. **P < 0.01.
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Figure 5. Ly6G+ cells from lal−/− mice influence EC functions
(A) The effect of Ly6G+ cells on EC tube-forming capability was determined by matrigel

tube formation assay. Left: representative micrographs of tube formation in ECs co-cultured

with lal+/+ or lal−/− Ly6G+ cells. Right: statistical analysis of cumulative tube lengths. Data

were normalized to lal+/+ ECs only. Bars represent 500 μm. (B) The effects of macrophages

(F4/80+ and CD11b+) and CD4+ T cells on EC tube-forming capability were determined by

matrigel tube formation assay. (C) The effect of Ly6G+ cells on angiogenesis in the in vivo

matrigel plug assay. Matrigel plugs containing Ly6G+ cells isolated from bone marrow of

lal+/+ or lal−/− mice were implanted into lal+/+ mice. Plugs were harvested 14 d after

implantation and analyzed by H&E and immunohistochemical staining. Representative

microphotographs of matrigel plug sections stained with H&E and CD31 antibody were

shown. Original magnification ×200. (D) The effect of Ly6G+ cells on angiogenesis in the

B16 melanoma tumor model. Matrigel mixed with B16 melanoma cells (1× 105) and lal+/+

or lal−/− Ly6G+ cells (1× 106) was implanted subcutaneously into lal+/+ mice for 10 days.

Representative microphotographs of matrigel plug sections stained with CD31 antibody

were shown. Original magnification ×200. n=10. (E) Real-time PCR analysis of the mRNA

expression level of VEGF in lal+/+ vs. lal−/− Ly6G+ cells. The relative gene expression was

normalized to GAPDH mRNA, and determined by the 2−ΔΔCT. (F) ECs were transfected

with VEGFR2 or control siRNA, and then the effect of Ly6G+ cells on EC tube-forming

capability was determined by matrigel tube formation assay. Statistical analysis of

cumulative tube lengths was shown. Data were normalized to lal+/+ ECs only. (G) ECs after

3 days’ co-culture with lal+/+ or lal−/− Ly6G+ cells were harvested, and the number was

counted. (H) The percentage of BrdU incorporation into lal+/+ or lal−/− ECs co-cultured with
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Ly6G+ cells was analyzed by flow cytometry. In above experiments, data were expressed as

mean ± SD; n = 3-4. *P < 0.05, **P < 0.01.
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Figure 6. Activation of the mTOR pathway is involved in EC dysfunctions
(A) Expressions of phosphorylated-S6 and S6 in lal+/+ or lal−/− ECs were determined by

Western blot analysis. Representative blots of 4 individual experiments were shown. (B)

After inhibition of mTOR in ECs by siRNA transfection, the expressions of phosphorylated-

S6 and S6 were examined afterwards. Representative blots of 3 individual experiments were

shown. (C) Ly6G+ cells transmigration was determined after mTOR knockdown by siRNA

transfection in ECs. Data were normalized to lal+/+ Ly6G+ cells transmigrating across lal+/+

ECs with control siRNA (C siRNA) transfection and expressed as mean ± SD; n = 4-5. *P <

0.05, **P < 0.01. (D) EC migration after mTOR knockdown was assessed by in vitro wound

healing assay in the presence of mitomycin C. Data were normalized to lal+/+ ECs with

control siRNA transfection at 0 h and expressed as mean ± SD; n = 3. *P < 0.05, **P < 0.01.

Bars represent 250 μm (C) and 500 μm (D). (E) Proliferation of CFSE-labeled lal+/+ CD4+ T

cells in the presence or absence of lal+/+ or lal−/− ECs with mTOR or control siRNA

transfection was analyzed by flow cytometry. (F) The secretion of IL-4, IL-10 and IFN-γ of

CD4+ T cells in the culture medium was measured by ELISA analysis. Data were expressed

as mean ± SD; n = 4. *P < 0.05, **P < 0.01.
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Figure 7. ROS over-production causes EC dysfunctions
(A) ROS production was increased in lal−/− ECs, which was reversed by mTOR inhibitor

rapamycin. Statistical analysis of mean fluorescent intensity (MFI) of the ROS level by flow

cytometry is shown. (B) Ly6G+ cell transmigration was determined after antioxidant NAC

pre-treatment of ECs. (C) Tube formation of ECs after NAC pre-treatment. Data were

normalized to lal+/+ ECs. (D) EC migration after NAC treatment by in vitro wound healing

assay at 15h in the presence of mitomycin C. Data were normalized to lal+/+ ECs at 0 h. (E)

EC proliferation after NAC treatment. (F) The proliferation of lal+/+ CD4+ T cells in the

presence of lal+/+ or lal−/− ECs with or without NAC pre-treatment was analyzed by flow

cytometry. In all above experiments, data were expressed as mean ± SD; n = 4. *P < 0.05,

**P < 0.01.
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