271 research outputs found

    Stochastic Unemployment with Dynamic Monopsony

    Get PDF
    This paper considers an equilibrium labour market with on-the-job search where heterogeneous ?rms, both by productivity and size, post wages and choose optimal hiring strategies. There are aggregate and ?rm speci?c pro- ductivity shocks. Industry dynamics are rich. By comparing the market out- come to the competitive allocation, simple numerical examples establishes how dynamic monopsony generates excessive job-to-job turnover, excessive job destruction rates at low productivity ?rms and so generates "too high" unemployment. It explains why gross hire ?ows and gross separation ?ows may be large and volatile, yet yield an unemployment process which is highly persistent

    Targeting quiescent leukemic stem cells using second generation autophagy inhibitors

    Get PDF
    In chronic myeloid leukemia (CML), tyrosine kinase inhibitor (TKI) treatment induces autophagy that promotes survival and TKI-resistance in leukemic stem cells (LSCs). In clinical studies hydroxychloroquine (HCQ), the only clinically approved autophagy inhibitor, does not consistently inhibit autophagy in cancer patients, so more potent autophagy inhibitors are needed. We generated a murine model of CML in which autophagic flux can be measured in bone marrow-located LSCs. In parallel, we use cell division tracing, phenotyping of primary CML cells, and a robust xenotransplantation model of human CML, to investigate the effect of Lys05, a highly potent lysosomotropic agent, and PIK-III, a selective inhibitor of VPS34, on the survival and function of LSCs. We demonstrate that long-term haematopoietic stem cells (LT-HSCs: Lin−Sca-1+c-kit+CD48−CD150+) isolated from leukemic mice have higher basal autophagy levels compared with non-leukemic LT-HSCs and more mature leukemic cells. Additionally, we present that while HCQ is ineffective, Lys05-mediated autophagy inhibition reduces LSCs quiescence and drives myeloid cell expansion. Furthermore, Lys05 and PIK-III reduced the number of primary CML LSCs and target xenografted LSCs when used in combination with TKI treatment, providing a strong rationale for clinical use of second generation autophagy inhibitors as a novel treatment for CML patients with LSC persistence

    Salience of social security contributions and employment

    Get PDF
    Social security contributions in most countries are split between employers and employees. According to standard incidence analysis, social security contributions affect employment negatively, but it is irrelevant how they are divided between employers and employees. This paper considers the possibility that (i) workers perceive a linkage between current contributions and future benefits, and (ii) they value employer’s contributions less than own contributions, as the former are less “salient.” Under these assumptions, I find that employers’ contributions have a stronger (negative) effect on employment than employees’ contributions. Furthermore, a change in how contributions are divided, which reduces the share of employers, is beneficial for employment. Finally, making employers’ contributions more visible to workers also has a positive effect on employment.Financial support from Instituto Valenciano de Investigaciones Económicas, Generalitat Valenciana (Prometeo/2013/037) and Ministerio de Economía y Competitividad (ECO2012-34928) are gratefully acknowledged

    Budding Yeast Dma Proteins Control Septin Dynamics and the Spindle Position Checkpoint by Promoting the Recruitment of the Elm1 Kinase to the Bud Neck

    Get PDF
    The first step towards cytokinesis in budding yeast is the assembly of a septin ring at the future site of bud emergence. Integrity of this ring is crucial for cytokinesis, proper spindle positioning, and the spindle position checkpoint (SPOC). This checkpoint delays mitotic exit and cytokinesis as long as the anaphase spindle does not properly align with the division axis. SPOC signalling requires the Kin4 protein kinase and the Kin4-regulating Elm1 kinase, which also controls septin dynamics. Here, we show that the two redundant ubiquitin-ligases Dma1 and Dma2 control septin dynamics and the SPOC by promoting the efficient recruitment of Elm1 to the bud neck. Indeed, dma1 dma2 mutant cells show reduced levels of Elm1 at the bud neck and Elm1-dependent activation of Kin4. Artificial recruitment of Elm1 to the bud neck of the same cells is sufficient to re-establish a normal septin ring, proper spindle positioning, and a proficient SPOC response in dma1 dma2 cells. Altogether, our data indicate that septin dynamics and SPOC function are intimately linked and support the idea that integrity of the bud neck is crucial for SPOC signalling

    Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Thecostraca are arguably the most morphologically and biologically variable group within the Crustacea, including both suspension feeders (Cirripedia: Thoracica and Acrothoracica) and parasitic forms (Cirripedia: Rhizocephala, Ascothoracida and Facetotecta). Similarities between the metamorphosis found in the Facetotecta and Rhizocephala suggests a common evolutionary origin, but until now no comprehensive study has looked at the basic evolution of these thecostracan groups.</p> <p>Results</p> <p>To this end, we collected DNA sequences from three nuclear genes [18S rRNA (2,305), 28S rRNA (2,402), Histone H3 (328)] and 41 larval characters in seven facetotectans, five ascothoracidans, three acrothoracicans, 25 rhizocephalans and 39 thoracicans (ingroup) and 12 Malacostraca and 10 Copepoda (outgroup). Maximum parsimony, maximum likelihood and Bayesian analyses showed the Facetotecta, Ascothoracida and Cirripedia each as monophyletic. The better resolved and highly supported DNA maximum likelihood and morphological-DNA Bayesian analysis trees depicted the main phylogenetic relationships within the Thecostraca as (Facetotecta, (Ascothoracida, (Acrothoracica, (Rhizocephala, Thoracica)))).</p> <p>Conclusion</p> <p>Our analyses indicate a convergent evolution of the very similar and highly reduced slug-shaped stages found during metamorphosis of both the Rhizocephala and the Facetotecta. This provides a remarkable case of convergent evolution and implies that the advanced endoparasitic mode of life known from the Rhizocephala and strongly indicated for the Facetotecta had no common origin. Future analyses are needed to determine whether the most recent common ancestor of the Thecostraca was free-living or some primitive form of ectoparasite.</p

    Atrioventricular and interventricular delay optimization in cardiac resynchronization therapy: physiological principles and overview of available methods

    Get PDF
    In this review, the physiological rationale for atrioventricular and interventricular delay optimization of cardiac resynchronization therapy is discussed including the influence of exercise and long-term cardiac resynchronization therapy. The broad spectrum of both invasive and non-invasive optimization methods is reviewed with critical appraisal of the literature. Although the spectrum of both invasive and non-invasive optimization methods is broad, no single method can be recommend for standard practice as large-scale studies using hard endpoints are lacking. Current efforts mainly investigate optimization during resting conditions; however, there is a need to develop automated algorithms to implement dynamic optimization in order to adapt to physiological alterations during exercise and after anatomical remodeling
    corecore