173 research outputs found

    CofiFab: Coarse-to-fine fabrication of large 3D objects

    Get PDF
    This paper presents CofiFab, a coarse-to-fine 3D fabrication solution, which combines 3D printing and 2D laser cutting for cost-effective fabrication of large objects at lower cost and higher speed. Our key approach is to first build coarse internal base structures within the given 3D object using laser-cutting, and then attach thin 3D-printed parts, as an external shell, onto the base to recover the fine surface details. CofiFab achieves this with three novel algorithmic components. First, we formulate an optimization model to compute fabricatable polyhedrons of maximized volume, as the geometry of the internal base. Second, we devise a new interlocking scheme to tightly connect laser-cut parts into a strong internal base, by iteratively building a network of nonorthogonal interlocking joints and locking parts around polyhedral corners. Lastly, we also optimize the partitioning of the external object shell into 3D-printable parts, while saving support material and avoiding overhangs. These components also consider aesthetics, stability and balancing in addition to cost saving. As a result, CofiFab can efficiently produce large objects by assembly. To evaluate its effectiveness, we fabricate objects of varying shapes and sizes, where CofiFab significantly improves compared to previous methods

    A Modified Specific Fuel Consumption Analysis for Predicting the Rearrangement of Energy System Structures

    Get PDF
    AbstractOne variation of exergy analysis, specific fuel consumption (SFC) analysis, was modified according the advanced exergy analysis, where exergy destructions within each component were split into endogenous/exogenous and avoidable/unavoidable parts, and by combining the energy-savings effects of each component. The modified analysis approach can help locate not only the weak points at the component level but also certain bottlenecks from the topology viewpoint, which may indicate adding or deleting some components, or enhancing the thermodynamic interactions between different process or subsystems. The modified approach was then applied to a conventional coal-fired power plant. The detailed spatial distribution of SFC within the current system at different partial-load conditions were deeply discussed at both component and process levels. Further splitting of SFC and the energy-saving effects of each process are also obtained and discussed. The results show that combustion and heat-and-mass transfer processes have the largest SFC. Heat-and-mass transfer process and the vent process have the greatest avoidable SFCs. The closer the component to the final product, the larger its influence on the overall performance, and, thus, a small improvement to these components may lead to a large reduction in the overall fuel consumption. More effective energy-saving measures of coal-fired power plants should focus on the match of heat transfer at intermediate-and-low temperature level and the breakage of the isolation of heat transfer subsystems, especially enhancing the interaction between the air preheating process and feedwater preheating process

    Magnetic γ-Fe2O3-Loaded Attapulgite Sorbent for Hg0 Removal in Coal-Fired Flue Gas

    Get PDF
    A magnetically recoverable composite mercury removal sorbent was produced by introducing magnetic γ-Fe2O3 into attapulgite (ATT) (xFe1ATT) via the co-precipitation method and used to remove Hg0 in the simulated coal-fired power plant flue gas. The as-prepared 0.5Fe1ATT sorbent was characterized by X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscopy, vibrating sample magnetometer, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy analyses. The results showed that the Hg0 removal performance of the composite of γ-Fe2O3 and ATT was significantly promoted in comparison to pure γ-Fe2O3 and ATT individually. A relatively high magnetization value and good Hg0 removal performance were obtained by the sample of 0.5Fe1ATT. O2 could enhance Hg0 removal activity via the Mars–Maessen mechanism. NO displayed a significant promotion effect on Hg0 removal as a result of the formation of active species, such as NO2 and NO+. SO2 inhibited the removal of Hg0 as a result of its competition adsorption against Hg0 for the active sites and the sulfation of the sorbent. However, the introduction of NO could obviously alleviate the adverse effect of SO2 on the Hg0 removal capability. H2O showed a prohibitive effect on Hg0 removal as a result of its competition with Hg0 for the active sites. The findings of this study are of fundamental importance to the development of efficient and economic magnetic mercury sorbents for Hg0 removal from coal-fired boiler flue gases

    Optical heterodyne micro-vibration detection based on all-fiber acousto-optic superlattice modulation

    Get PDF
    We propose a configuration of optical heterodyne micro-vibration detection based on an all-fiber acousto-optic superlattic modulation structure that acts as both frequency shifter and reflector, simultaneously. The vibration information within the frequency range between 1 Hz to 150 kHz of a piezoelectric mirror (PZM) has been experimentally measured by using this all-fiber optical heterodyne detection configuration. The minimal measurable vibration amplitude and the resolution are around 0.013 nm and 10 pm in the region of tens to hundreds of kilohertz, respectively. The configuration not only has advantages of compact size, easy alignment and non-contact measurement, but also gains high accuracy, which provides a promising alternative and could be applied in the compact and portable instruments based on optical heterodyne detection

    Lipids, lipid-lowering agents, and inflammatory bowel disease: a Mendelian randomization study

    Get PDF
    BackgroundTo assess the causal role of lipid traits and lipid-lowering agents in inflammatory bowel disease (IBD).MethodsUnivariable mendelian randomization (MR) and multivariable MR (MVMR) analyses were conducted to evaluate the causal association between low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C) and IBD. Drug-targeted MR analyzed the effects of lipid-lowering drugs on IBD, and network MR was used to analyze potential mediation effects.ResultsThe levels of HDL-C had an inverse relationship with the risk of Crohn’s disease (CD, OR: 0.85, 95% CI: 0.73-0.98, P = 0.024). In MVMR, the inverse relationships were found in all three outcomes. Drug-targeted MR analyses showed that with one-SD LDL-C decrease predicted by variants at or near proprotein convertase subtilisin/kexin type 9 (PCSK9), the OR values of people diagnosed with IBD, ulcerative colitis (UC) and CD were 1.75 (95%CI: 1.13-2.69, P = 0.011), 2.1 (95%CI: 1.28-3.42, P = 0.003) and 2.24 (95%CI: 1.11-4.5, P = 0.024), respectively. With one-SD LDL-C decrease predicted by variants at or near cholesteryl ester transfer protein (CETP), the OR value of people diagnosed with CD was 0.12 (95%CI: 0.03-0.51, P = 0.004). Network-MR showed that HDL-C mediated the causal pathway from variants at or near CETP to CD.ConclusionOur study suggested a causal association between HDL-C and IBD, UC and CD. Genetically proxied inhibition of PCSK9 increased the risk of IBD, UC and CD, while inhibition of CETP decreased the risk of CD. Further studies are needed to clarify the long-term effect of lipid-lowering drugs on the gastrointestinal disorders

    Desulfurization using limestone during sludge incineration in a fluidized bed furnace: Increased risk of particulate matter and heavy metal emissions

    Get PDF
    Incineration of sludge can be an effective method to minimise waste whilst producing useful heat. However, incineration can cause secondary pollution issues due to the emission of SO2, therefore a set of experiments of sludge incineration in a bubble bed furnace were conducted with limestone addition to study desulfurization of sludge incineration flue gas. As expected, over 93% emission of SO2 was reduced with limestone addition, and that of CO and NOx were increased and decreased respectively when the fuel feeding rate raised. The distribution of fly ash was also increased by raising the fuel feeding rate due to increasing fragmentation of the ash. However, distributions of PM2.5 and heavy metals in submicron particles have dramatically increased with limestone desulfurization. The mechanism was revealed by SEM and EDS statistical analysis, indicating that the reaction between aluminosilicate and calcium made particles agglomerate and eutectic mixtures form, these larger ash particles were found to divide between collection as cyclone ash and fragmentation into finer particles that bypassed the cyclone. Those fine particles provided more surface area for heavy metal condensation. Furthermore, it was found that the reaction mechanism for semi-volatile metals involved them being released from the sludge and forming PM1 particles due to the vaporization-condensation mechanism, leading to higher emission of PM1 and distribution of heavy metals in PM1. Thus, it should be considered that there may actually be higher emission risks of PM and heavy metal emissions when aiming to desulfurize a flue gas using Ca-based minerals in certain circumstance
    corecore