
Supplementary Material for
CofiFab: Coarse-to-Fine Fabrication of Large 3D Objects

1 Volumes of convex polyhedrons

To compute the volume V (P) for a convex polyhedron P with
vertices P = {p1, . . . ,pn}, we first introduce a new vertex

p(fj) =
1

σ(j)

σ(j)∑
k=1

pjk

for every non-triangular face fj with vertices pj1 ,pj2 , . . . ,pjσ(j) .
Connecting p(fj) with all vertices of fj results in a triangulation of
the polyhedron. Then the volume of the polyhedron can be computed
as [Allgower and Schmidt 1986]

V (P) =
1

6

∑
ti∈T

det
(
p1(ti),p

2(ti),p
3(ti)

)
, (1)

where T is the set of faces for the triangulated polyhedron, and
p1(ti),p

2(ti),p
3(ti) are the vertices of triangle ti in positive ori-

entation. In our optimization, the positive orientation is determined
from the initial polyhedron shape, by choosing a consistent ordering
of triangle vertices such that Equation (1) produces a positive value.

2 Surface sampling for convex polyhedrons

Our optimization requires sample points {qi} on the surface of
a polyhedron P , represented as qi = Pbi, where bi ∈ Rn are
pre-computed convex combination coefficients with respect to the
polyhedron vertex positions. To generate the samples and compute
the coefficient vectors {bi}, we first triangulate the polyhedron by
introducing new vertices on non-triangular faces (see Section 1). We
then compute three types of sample points from the triangulated
polyhedron T :

1. Vertices of T : such a sample point qi is either a vertex of the
original polyhedron P , or an interior point on a face of P . In the
former case, vector bi has exactly one non-zero element of value
1. In the latter case, there are σ(j) non-zero elements in bi, each
with value 1/σ(j), where σ(j) is the number of vertices of the
original polyhedron face that contains qi (see Equation (1)).

2. Interior points on an edge ei of T : such a point can be represented
as a convex combination of the two vertex sample points that
belongs to ei. In our implementation, we generate K internal
sample points for each edge. Let qi1 ,qi2 be the coefficient
vectors for the two end vertex samples for ei, then the K interior
samples on ei are computed as:

qj(ei) =
j

K + 1
qi1 +

K − j + 1

K + 1
qi2 , j = 1, . . . ,K.

3. Interior points on a triangle ti of T : such a point can be repre-
sented as a convex combination of the three vertex sample points
that belongs to ti. Let qi1 ,qi2 ,qi3 be the coefficient vectors
for the vertex samples, then according to the parameter K the
sample points are computed as:

qa,b,c(ti) =
a

K + 1
qi1 +

b

K + 1
qi2 +

c

K + 1
qi3 ,

where a, b, c ∈ N and a+ b+ c = K + 1.

We determine the value of K from a user-specified parameter Ns
for the preferred number of samples. K is chosen as the smallest
number such that the total number of sample points is at least Ns.

3 Computation of centroids

To compute the centroid C of the final model, we consider the
final model as the combination of a hollow polyhedron made from
uniform thin-sheet materials, and a 3D volume shell with uniform
density. Then

C =
(C1V1 −C3V3)ρ1 +C2A2ρ2

(V1 − V3)ρ1 +A2ρ2
,

where C1,C3 are the solid centroids of the target shape and the
polyhedron, respectively; C2 is the surface centroid of the poly-
hedron; V1, V3 are the internal volumes of the target surface and
the polyhedron, respectively; A2 is the polyhedron surface area; ρ1
and ρ2 are parameters for the volume density of the 3D printed part
and the area density of the laser-cut material, respectively. Here
V1,V3 can be computed using Equation (1). Using the same nota-
tion as Equation (1), the solid centroid of a polyhedron shape can be
computed as

C(P) =∑
ti∈T det

(
p1(ti),p

2(ti),p
3(ti)

)
(p1(ti) + p2(ti) + p3(ti))

4 ·
∑
ti∈T det (p1(ti),p2(ti),p3(ti))

,

(2)

while the surface area of a polyhedron is

AP =
1

2

∑
ti∈T

‖[p2(ti)− p1(ti)]× [p3(ti)− p1(ti)]‖, (3)

and its surface centroid is

CA(P) =∑
ti∈T ‖[p

2(ti)− p1(ti)]× [p3(ti)− p1(ti)]‖
∑3
k=1 p

k(ti)∑
ti∈T ‖[p2(ti)− p1(ti)]× [p3(ti)− p1(ti)]‖

,

(4)

C1,C3 are computed using formula (2), while As and C2 are
computed using formulas (3) and (4), respectively.

4 Constraints for optimizing multiple polyhe-
drons

The two faces (f ik, f
j
l ) chosen for the connection between two poly-

hedrons must satisfy the following conditions:

1. f ik, f
j
l are parallel, with their outward normals pointing to-

wards each other;

2. there exists a cylinder with radius r and with its axis parallel
to the normals of f ik, f

j
l , such that its two ends touch the two

faces (f ik, f
j
l ) and lie within the interior of each face, and the

whole cylinder lie inside the target shape.
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For the first condition, we require

nik + njl = 0,

where nik and njl are the outward normal variables for the two faces.
For the second condition, we introduce auxiliary variables cik, c

j
l ∈

R3 for the centers of the circles, where the cylinder touches the two
faces. cik and cjl are required to lie on the two faces, respectively.
The line segment between these two points must be orthogonal to
the two faces, thus requiring

cik + tikn
i
k = cjl ,

with auxiliary variable tik > 0. Moreover, each face must be kept
inside a disc with radius r and center cik (or cjl , respectively). Taking
face f ik as an example, we require

(cik − pj1) ·
nik × (pj1 − pj2)

‖nik × (pj1 − pj2)‖
≥ r,

where pj1 ,pj2 are two adjacent vertices in f ik in an appropriate
order. A similar constraint is defined for face f jl . Finally, we
compute a set of sample points {q} on the cylinder, and enforce a
constraint

D(q) ≥ dmin,

where D is the signed distance function from the surface of the
whole object. Each sample q is computed as

q = acik + (1− a)njl + r(ek,i1 cos b+ ek,i2 cos b),

where parameters a ∈ [0, 1] and b ∈ [0, 2π] are pre-determined,
ek,i1 , ek,i2 are auxiliary variables that form an orthonormal frame with
nik, previously used for enforcing the bounding rectangle constraints.
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