CORE

Supplementary Material for CofiFab: Coarse-to-Fine Fabrication of Large 3D Objects

1 Volumes of convex polyhedrons

To compute the volume $V(\mathbf{P})$ for a convex polyhedron P with vertices $\mathbf{P}=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\}$, we first introduce a new vertex

$$
\mathbf{p}\left(f_{j}\right)=\frac{1}{\sigma(j)} \sum_{k=1}^{\sigma(j)} \mathbf{p}_{j_{k}}
$$

for every non-triangular face f_{j} with vertices $\mathbf{p}_{j_{1}}, \mathbf{p}_{j_{2}}, \ldots, \mathbf{p}_{j_{\sigma(j)}}$. Connecting $\mathbf{p}\left(f_{j}\right)$ with all vertices of f_{j} results in a triangulation of the polyhedron. Then the volume of the polyhedron can be computed as [Allgower and Schmidt 1986]

$$
\begin{equation*}
V(\mathbf{P})=\frac{1}{6} \sum_{t_{i} \in \mathcal{T}} \operatorname{det}\left(\mathbf{p}^{1}\left(t_{i}\right), \mathbf{p}^{2}\left(t_{i}\right), \mathbf{p}^{3}\left(t_{i}\right)\right) \tag{1}
\end{equation*}
$$

where \mathcal{T} is the set of faces for the triangulated polyhedron, and $\mathbf{p}^{1}\left(t_{i}\right), \mathbf{p}^{2}\left(t_{i}\right), \mathbf{p}^{3}\left(t_{i}\right)$ are the vertices of triangle t_{i} in positive orientation. In our optimization, the positive orientation is determined from the initial polyhedron shape, by choosing a consistent ordering of triangle vertices such that Equation (1) produces a positive value.

2 Surface sampling for convex polyhedrons

Our optimization requires sample points $\left\{\mathbf{q}_{i}\right\}$ on the surface of a polyhedron P, represented as $\mathbf{q}_{i}=\mathbf{P} \mathbf{b}_{i}$, where $\mathbf{b}_{i} \in \mathbb{R}^{n}$ are pre-computed convex combination coefficients with respect to the polyhedron vertex positions. To generate the samples and compute the coefficient vectors $\left\{\mathbf{b}_{i}\right\}$, we first triangulate the polyhedron by introducing new vertices on non-triangular faces (see Section 1). We then compute three types of sample points from the triangulated polyhedron T :

1. Vertices of T : such a sample point \mathbf{q}_{i} is either a vertex of the original polyhedron P, or an interior point on a face of P. In the former case, vector \mathbf{b}_{i} has exactly one non-zero element of value 1. In the latter case, there are $\sigma(j)$ non-zero elements in \mathbf{b}_{i}, each with value $1 / \sigma(j)$, where $\sigma(j)$ is the number of vertices of the original polyhedron face that contains \mathbf{q}_{i} (see Equation (1)).
2. Interior points on an edge e_{i} of T : such a point can be represented as a convex combination of the two vertex sample points that belongs to e_{i}. In our implementation, we generate K internal sample points for each edge. Let $\mathbf{q}_{i_{1}}, \mathbf{q}_{i_{2}}$ be the coefficient vectors for the two end vertex samples for e_{i}, then the K interior samples on e_{i} are computed as:

$$
\mathbf{q}_{j}\left(e_{i}\right)=\frac{j}{K+1} \mathbf{q}_{i_{1}}+\frac{K-j+1}{K+1} \mathbf{q}_{i_{2}}, \quad j=1, \ldots, K
$$

3. Interior points on a triangle t_{i} of T : such a point can be represented as a convex combination of the three vertex sample points that belongs to t_{i}. Let $\mathbf{q}_{i_{1}}, \mathbf{q}_{i_{2}}, \mathbf{q}_{i_{3}}$ be the coefficient vectors for the vertex samples, then according to the parameter K the sample points are computed as:

$$
\mathbf{q}_{a, b, c}\left(t_{i}\right)=\frac{a}{K+1} \mathbf{q}_{i_{1}}+\frac{b}{K+1} \mathbf{q}_{i_{2}}+\frac{c}{K+1} \mathbf{q}_{i_{3}}
$$

where $a, b, c \in \mathbb{N}$ and $a+b+c=K+1$.

We determine the value of K from a user-specified parameter N_{s} for the preferred number of samples. K is chosen as the smallest number such that the total number of sample points is at least N_{s}.

3 Computation of centroids

To compute the centroid \mathbf{C} of the final model, we consider the final model as the combination of a hollow polyhedron made from uniform thin-sheet materials, and a 3D volume shell with uniform density. Then

$$
\mathbf{C}=\frac{\left(\mathbf{C}_{1} V_{1}-\mathbf{C}_{3} V_{3}\right) \rho_{1}+\mathbf{C}_{2} A_{2} \rho_{2}}{\left(V_{1}-V_{3}\right) \rho_{1}+A_{2} \rho_{2}}
$$

where $\mathbf{C}_{1}, \mathbf{C}_{3}$ are the solid centroids of the target shape and the polyhedron, respectively; \mathbf{C}_{2} is the surface centroid of the polyhedron; V_{1}, V_{3} are the internal volumes of the target surface and the polyhedron, respectively; A_{2} is the polyhedron surface area; ρ_{1} and ρ_{2} are parameters for the volume density of the 3D printed part and the area density of the laser-cut material, respectively. Here $\mathbf{V}_{1}, \mathbf{V}_{3}$ can be computed using Equation (1). Using the same notation as Equation (1), the solid centroid of a polyhedron shape can be computed as

$$
\begin{align*}
& \mathbf{C}(\mathbf{P})= \\
& \frac{\sum_{t_{i} \in \mathcal{T}} \operatorname{det}\left(\mathbf{p}^{1}\left(t_{i}\right), \mathbf{p}^{2}\left(t_{i}\right), \mathbf{p}^{3}\left(t_{i}\right)\right)\left(\mathbf{p}^{1}\left(t_{i}\right)+\mathbf{p}^{2}\left(t_{i}\right)+\mathbf{p}^{3}\left(t_{i}\right)\right)}{4 \cdot \sum_{t_{i} \in \mathcal{T}} \operatorname{det}\left(\mathbf{p}^{1}\left(t_{i}\right), \mathbf{p}^{2}\left(t_{i}\right), \mathbf{p}^{3}\left(t_{i}\right)\right)} \tag{2}
\end{align*}
$$

while the surface area of a polyhedron is

$$
\begin{equation*}
A_{\mathbf{P}}=\frac{1}{2} \sum_{t_{i} \in \mathcal{T}}\left\|\left[\mathbf{p}^{2}\left(t_{i}\right)-\mathbf{p}^{1}\left(t_{i}\right)\right] \times\left[\mathbf{p}^{3}\left(t_{i}\right)-\mathbf{p}^{1}\left(t_{i}\right)\right]\right\| \tag{3}
\end{equation*}
$$

and its surface centroid is

$$
\begin{align*}
& \mathbf{C}_{A}(\mathbf{P})= \\
& \frac{\sum_{t_{i} \in \mathcal{T}}\left\|\left[\mathbf{p}^{2}\left(t_{i}\right)-\mathbf{p}^{1}\left(t_{i}\right)\right] \times\left[\mathbf{p}^{3}\left(t_{i}\right)-\mathbf{p}^{1}\left(t_{i}\right)\right]\right\| \sum_{k=1}^{3} \mathbf{p}^{k}\left(t_{i}\right)}{\sum_{t_{i} \in \mathcal{T}}\left\|\left[\mathbf{p}^{2}\left(t_{i}\right)-\mathbf{p}^{1}\left(t_{i}\right)\right] \times\left[\mathbf{p}^{3}\left(t_{i}\right)-\mathbf{p}^{1}\left(t_{i}\right)\right]\right\|} \tag{4}
\end{align*}
$$

$\mathbf{C}_{1}, \mathbf{C}_{3}$ are computed using formula (2), while A_{s} and \mathbf{C}_{2} are computed using formulas (3) and (4), respectively.

4 Constraints for optimizing multiple polyhedrons

The two faces $\left(f_{k}^{i}, f_{l}^{j}\right)$ chosen for the connection between two polyhedrons must satisfy the following conditions:

1. f_{k}^{i}, f_{l}^{j} are parallel, with their outward normals pointing towards each other;
2. there exists a cylinder with radius r and with its axis parallel to the normals of f_{k}^{i}, f_{l}^{j}, such that its two ends touch the two faces $\left(f_{k}^{i}, f_{l}^{j}\right)$ and lie within the interior of each face, and the whole cylinder lie inside the target shape.

For the first condition, we require

$$
\mathbf{n}_{k}^{i}+\mathbf{n}_{l}^{j}=\mathbf{0},
$$

where \mathbf{n}_{k}^{i} and \mathbf{n}_{l}^{j} are the outward normal variables for the two faces. For the second condition, we introduce auxiliary variables $\mathbf{c}_{k}^{i}, \mathbf{c}_{l}^{j} \in$ \mathbb{R}^{3} for the centers of the circles, where the cylinder touches the two faces. \mathbf{c}_{k}^{i} and \mathbf{c}_{l}^{j} are required to lie on the two faces, respectively. The line segment between these two points must be orthogonal to the two faces, thus requiring

$$
\mathbf{c}_{k}^{i}+t_{k}^{i} \mathbf{n}_{k}^{i}=\mathbf{c}_{l}^{j},
$$

with auxiliary variable $t_{k}^{i}>0$. Moreover, each face must be kept inside a disc with radius r and center \mathbf{c}_{k}^{i} (or \mathbf{c}_{l}^{j}, respectively). Taking face f_{k}^{i} as an example, we require

$$
\left(\mathbf{c}_{k}^{i}-\mathbf{p}_{j_{1}}\right) \cdot \frac{\mathbf{n}_{k}^{i} \times\left(\mathbf{p}_{j_{1}}-\mathbf{p}_{j_{2}}\right)}{\left\|\mathbf{n}_{k}^{i} \times\left(\mathbf{p}_{j_{1}}-\mathbf{p}_{j_{2}}\right)\right\|} \geq r
$$

where $\mathbf{p}_{j_{1}}, \mathbf{p}_{j_{2}}$ are two adjacent vertices in f_{k}^{i} in an appropriate order. A similar constraint is defined for face f_{l}^{j}. Finally, we compute a set of sample points $\{\mathbf{q}\}$ on the cylinder, and enforce a constraint

$$
D(\mathbf{q}) \geq d_{\min }
$$

where D is the signed distance function from the surface of the whole object. Each sample \mathbf{q} is computed as

$$
\mathbf{q}=a \mathbf{c}_{k}^{i}+(1-a) \mathbf{n}_{l}^{j}+r\left(\mathbf{e}_{1}^{k, i} \cos b+\mathbf{e}_{2}^{k, i} \cos b\right),
$$

where parameters $a \in[0,1]$ and $b \in[0,2 \pi]$ are pre-determined, $\mathbf{e}_{1}^{k, i}, \mathbf{e}_{2}^{k, i}$ are auxiliary variables that form an orthonormal frame with \mathbf{n}_{k}^{i}, previously used for enforcing the bounding rectangle constraints.

References

Allgower, E. L., and Schmidt, P. H. 1986. Computing volumes of polyhedra. Math. Comput. 46, 173, 171-174.

