1,280 research outputs found

    Distress related to myocardial infarction and cardiovascular outcome: a retrospective observational study

    Get PDF
    Background During acute coronary syndromes patients perceive intense distress. We hypothesized that retrospective ratings of patients' MI-related fear of dying, helplessness, or pain, all assessed within the first year post-MI, are associated with poor cardiovascular outcome. Methods We studied 304 patients (61 ± 11 years, 85% men) who after a median of 52 days (range 12-365 days) after index MI retrospectively rated the level of distress in the form of fear of dying, helplessness, or pain they had perceived at the time of MI on a numeric scale ranging from 0 ("no distress") to 10 ("extreme distress"). Non-fatal hospital readmissions due to cardiovascular disease (CVD) related events (i.e., recurrent MI, elective and non-elective stent implantation, bypass surgery, pacemaker implantation, cerebrovascular incidents) were assessed at follow-up. The relative CVD event risk was computed for a (clinically meaningful) 2-point increase of distress using Cox proportional hazard models. Results During a median follow-up of 32 months (range 16-45), 45 patients (14.8%) experienced a CVD-related event requiring hospital readmission. Greater fear of dying (HR 1.21, 95% CI 1.03-1.43), helplessness (HR 1.22, 95% CI 1.04-1.44), or pain (HR 1.27, 95% CI 1.02-1.58) were significantly associated with an increased CVD risk without adjustment for covariates. A similarly increased relative risk emerged in patients with an unscheduled CVD-related hospital readmission, i.e., when excluding patients with elective stenting (fear of dying: HR 1.26, 95% CI 1.05-1.51; helplessness: 1.26, 95% CI 1.05-1.52; pain: HR 1.30, 95% CI 1.01-1.66). In the fully-adjusted models controlling for age, the number of diseased coronary vessels, hypertension, and smoking, HRs were 1.24 (95% CI 1.04-1.46) for fear of dying, 1.26 (95% CI 1.06-1.50) for helplessness, and 1.26 (95% CI 1.01-1.57) for pain. Conclusions Retrospectively perceived MI-related distress in the form of fear of dying, helplessness, or pain was associated with non-fatal cardiovascular outcome independent of other important prognostic factors

    Is group cognitive behaviour therapy for postnatal depression evidence-based practice? A systematic review

    Get PDF
    Background: There is evidence that psychological therapies including cognitive behaviour therapy (CBT) may be effective in reducing postnatal depression (PND) when offered to individuals. In clinical practice, this is also implemented in a group therapy format, which, although not recommended in guidelines, is seen as a cost-effective alternative. To consider the extent to which group methods can be seen as evidence-based, we systematically review and synthesise the evidence for the efficacy of group CBT compared to currently used packages of care for women with PND, and we discuss further factors which may contribute to clinician confidence in implementing an intervention. Methods: Seventeen electronic databases were searched. All full papers were read by two reviewers and a third reviewer was consulted in the event of a disagreement on inclusion. Selected studies were quality assessed, using the Cochrane Risk of Bias Tool, were data extracted by two reviewers using a standardised data extraction form and statistically synthesised where appropriate using the fixed-effect inverse-variance method. Results: Seven studies met the inclusion criteria. Meta-analyses showed group CBT to be effective in reducing depression compared to routine primary care, usual care or waiting list groups. A pooled effect size of d = 0.57 (95% CI 0.34 to 0.80, p < 0.001) was observed at 10–13 weeks post-randomisation, reducing to d = 0.28 (95% CI 0.03 to 0.53, p = 0.025) at 6 months. The non-randomised comparisons against waiting list controls at 10–13 weeks was associated with a larger effect size of d = 0.94 (95% CI 0.42 to 1.47, p < 0.001). However due to the limitations of the available data, such as ill-specified definitions of the CBT component of the group programmes, these results should be interpreted with caution. Conclusions: Although the evidence available is limited, group CBT was shown to be effective. We argue, therefore, that there is sufficient evidence to implement group CBT, conditional upon routinely collected outcomes being benchmarked against those obtained in trials of individual CBT, and with other important factors such as patient preference, clinical experience, and information from the local context taken into account when making the treatment decision

    Tryptophan Scanning Analysis of the Membrane Domain of CTR-Copper Transporters

    Get PDF
    Membrane proteins of the CTR family mediate cellular copper uptake in all eukaryotic cells and have been shown to participate in uptake of platinum-based anticancer drugs. Despite their importance for life and the clinical treatment of malignancies, directed biochemical studies of CTR proteins have been difficult because high-resolution structural information is missing. Building on our recent 7Å structure of the human copper transporter hCTR1, we present the results of an extensive tryptophan-scanning analysis of hCTR1 and its distant relative, yeast CTR3. The comparative analysis supports our previous assignment of the transmembrane helices and shows that most functionally and structurally important residues are clustered around the threefold axis of CTR trimers or engage in helix packing interactions. The scan also identified residues that may play roles in interactions between CTR trimers and suggested that the first transmembrane helix serves as an adaptor that allows evolutionarily diverse CTRs to adopt the same overall structure. Together with previous biochemical and biophysical data, the results of the tryptophan scan are consistent with a mechanistic model in which copper transport occurs along the center of the trimer

    Global Functional Analyses of Cellular Responses to Pore-Forming Toxins

    Get PDF
    Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs

    Hypoxia and the Hypoxic Response Pathway Protect against Pore-Forming Toxins in C. elegans

    Get PDF
    Pore-forming toxins (PFTs) are by far the most abundant bacterial protein toxins and are important for the virulence of many important pathogens. As such, cellular responses to PFTs critically modulate host-pathogen interactions. Although many cellular responses to PFTs have been recorded, little is understood about their relevance to pathological or defensive outcomes. To shed light on this important question, we have turned to the only genetic system for studying PFT-host interactions—Caenorhabditis elegans intoxication by Crystal (Cry) protein PFTs. We mutagenized and screened for C. elegans mutants resistant to a Cry PFT and recovered one mutant. Complementation, sequencing, transgenic rescue, and RNA interference data demonstrate that this mutant eliminates a gene normally involved in repression of the hypoxia (low oxygen response) pathway. We find that up-regulation of the C. elegans hypoxia pathway via the inactivation of three different genes that normally repress the pathway results in animals resistant to Cry PFTs. Conversely, mutation in the central activator of the hypoxia response, HIF-1, suppresses this resistance and can result in animals defective in PFT defenses. These results extend to a PFT that attacks mammals since up-regulation of the hypoxia pathway confers resistance to Vibrio cholerae cytolysin (VCC), whereas down-regulation confers hypersusceptibility. The hypoxia PFT defense pathway acts cell autonomously to protect the cells directly under attack and is different from other hypoxia pathway stress responses. Two of the downstream effectors of this pathway include the nuclear receptor nhr-57 and the unfolded protein response. In addition, the hypoxia pathway itself is induced by PFT, and low oxygen is protective against PFT intoxication. These results demonstrate that hypoxia and induction of the hypoxia response protect cells against PFTs, and that the cellular environment can be modulated via the hypoxia pathway to protect against the most prevalent class of weapons used by pathogenic bacteria

    Effects of co-administered dexamethasone and diclofenac potassium on pain, swelling and trismus following third molar surgery

    Get PDF
    BACKGROUND: The apparent interactions between the mechanisms of action of non-steroidal anti-inflammatory drugs (NSAIDS) and steroids suggest that co-therapy may provide beneficial inflammatory and pain relief in the absence of side effects. The aim of the study was to compare the effect of co-administered dexamethasone and diclofenac potassium (diclofenac K) with diclofenac K alone on the postoperative pain, swelling and trismus after surgical removal of third molars. PATIENTS AND METHODS: A prospective randomized double-blind study was conducted at the Department of Oral and Maxillofacial Surgery, Lagos University Teaching Hospital, Nigeria. A total of 100 patients were randomly allocated to two treatment groups of dexamethasone (prophylactic 8 mg and postoperative 4 mg IV) and diclofenac K (50 mg Oral before and after surgery), and diclofenac K alone (as with first group). The overall analgesic efficacy of the drug combinations was assessed postoperatively by determination of pain intensity using a category rating scale. Facial swelling was measured using a tape measure placed from tragus to gonion to tragus, while interincisal mouth-opening of patients was measured using a vernier calibrated caliper pre-operatively and post-operatively. RESULTS: Co-administration of dexamethasone and diclofenac K was significantly superior to diclofenac alone for the relief of pain (P < 0.05), and facial swelling up to post-operative 48 hour (P < 0.05). However, there was no significant difference for trismus relief between the two medication protocols (P > 0.05). CONCLUSION: This study illustrates enhanced effects of co-administered dexamethasone and diclofenac K on short-term post-operative pain and swelling, compared to diclofenac potassium alone in third molar surgery

    Gender differences in presentation and diagnosis of chest pain in primary care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chest pain is a common complaint and reason for consultation in primary care. Research related to gender differences in regard to Coronary Heart Disease (CHD) has been mainly conducted in hospital but not in primary care settings. We aimed to analyse gender differences in aetiology and clinical characteristics of chest pain and to provide gender related symptoms and signs associated with CHD.</p> <p>Methods</p> <p>We included 1212 consecutive patients with chest pain aged 35 years and older attending 74 general practitioners (GPs). GPs recorded symptoms and findings of each patient and provided follow up information. An independent interdisciplinary reference panel reviewed clinical data of every patient and decided about the aetiology of chest pain at the time of patient recruitment. Multivariable regression analysis was performed to identify clinical predictors that help to rule in or out CHD in women and men.</p> <p>Results</p> <p>Women showed more psychogenic disorders (women 11,2%, men 7.3%, p = 0.02), men suffered more from CHD (women 13.0%, men 17.2%, p = 0.04), trauma (women 1.8%, men 5.1%, p < 0.001) and pneumonia/pleurisy (women 1.3%, men 3.0%, p = 0.04) Men showed significantly more often chest pain localised on the right side of the chest (women 9.1%, men 25.0%, p = 0.01). For both genders known clinical vascular disease, pain worse with exercise and age were associated positively with CHD. In women pain duration above one hour was associated positively with CHD, while shorter pain durations showed an association with CHD in men. In women negative associations were found for stinging pain and in men for pain depending on inspiration and localised muscle tension.</p> <p>Conclusions</p> <p>We found gender differences in regard to aetiology, selected clinical characteristics and association of symptoms and signs with CHD in patients presenting with chest pain in a primary care setting. Further research is necessary to elucidate whether these differences would support recommendations for different diagnostic approaches for CHD according to a patient's gender.</p

    Inhibiting mevalonate pathway enzymes increases stromal cell resilience to a cholesterol-dependent cytolysin

    Get PDF
    Animal health depends on the ability of immune cells to kill invading pathogens, and on the resilience of tissues to tolerate the presence of pathogens. Trueperella pyogenes causes tissue pathology in many mammals by secreting a cholesterol-dependent cytolysin, pyolysin (PLO), which targets stromal cells. Cellular cholesterol is derived from squalene, which is synthesized via the mevalonate pathway enzymes, including HMGCR, FDPS and FDFT1. The present study tested the hypothesis that inhibiting enzymes in the mevalonate pathway to reduce cellular cholesterol increases the resilience of stromal cells to PLO. We first verified that depleting cellular cholesterol with methyl-β-cyclodextrin increased the resilience of stromal cells to PLO. We then used siRNA to deplete mevalonate pathway enzyme gene expression, and used pharmaceutical inhibitors, atorvastatin, alendronate or zaragozic acid to inhibit the activity of HMGCR, FDPS and FDFT1, respectively. These approaches successfully reduced cellular cholesterol abundance, but mevalonate pathway enzymes did not affect cellular resilience equally. Inhibiting FDFT1 was most effective, with zaragozic acid reducing the impact of PLO on cell viability. The present study provides evidence that inhibiting FDFT1 increases stromal cell resilience to a cholesterol-dependent cytolysin

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore