48 research outputs found

    Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset

    Get PDF
    We present an approach in which the semantics of an XML language is defined by means of a transformation from an XML document model (an XML schema) to an application specific model. The application specific model implements the intended behavior of documents written in the language. A transformation is specified in a model transformation language used in the Model Driven Architecture (MDA) approach for software development. Our approach provides a better separation of three concerns found in XML applications: syntax, syntax processing logic and intended meaning of the syntax. It frees the developer of low-level syntactical details and improves the adaptability and reusability of XML applications. Declarative transformation rules and the explicit application model provide a finer control over the application parts affected by adaptations. Transformation rules and the application model for an XML language may be composed with the corresponding rules and application models defined for other XML languages. In that way we achieve reuse and composition of XML applications

    Source(s) and cycling of the nonhydrolyzable organic fraction of oceanic particles

    No full text
    A major fraction of particulate organic carbon (POC) in the deep ocean remains molecularly uncharacterized. In an effort to determine the chemical characteristics and source(s) of sinking POC, we studied a nonhydrolyzable fraction of sinking POC using C-13 NMR (nuclear magnetic resonance) spectroscopy and analytical pyrolysis. 1 3 C NMR spectra and products from analytical pyrolysis of the nonhydrolyzable fraction exhibit a strongly aliphatic character that is distinct from that of bulk POC. The aliphatic nature of this fraction is consistent with its low stable carbon isotope values. We hypothesize that the nonhydrolyzable fraction derives to a significant extent from a refractory component of organisms that selectively accumulates, resulting in its manifestation as a major part of POC sinking to the deep ocean and in underlying sediments. (c) 2006 Elsevier Inc. All rights reserved.X111011sciescopu
    corecore