

Musilova, M., Tranter, M., Wadham, J., Telling, J., Tedstone, A., & Anesio, A. (2017). Microbially-driven export of labile organic carbon from the Greenland Ice Sheet. *Nature Geoscience*, *10*(5), 360–365. https://doi.org/10.1038/ngeo2920

Peer reviewed version

Link to published version (if available): 10.1038/ngeo2920

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Nature at http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2920.html. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

Microbially-driven export of labile organic carbon from the Greenland Ice Sheet

3	Michaela Musilova ¹ *, Martyn Tranter ¹ , Jemma Wadham ¹ , Jon Telling ¹ , Andrew			
4	Tedstone ^{2**} and Alexandre M. Anesio ¹			
5	¹ Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol,			
6	UK			
7	² School of Geoscience, University of Edinburgh, Edinburgh, UK			
8				
9	* Present address:			
10	Slovak Organisation for Space Activities (SOSA), Bratislava, Slovakia			
11	& Faculty of Electrical Engineering and Information Technology of the Slovak University of			
12	Technology, Bratislava, Slovakia			
13	** Present address:			
14	Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol,			
15	UK			
16				
17				
18				
19				
20				
21				
22				

- 24 Abstract
- 25

26 Glaciers and ice sheets are significant sources of dissolved organic carbon and nutrients to 27 downstream subglacial and marine ecosystems. Climatically-driven increases in glacial 28 runoff are expected to intensify the impact of exported nutrients on local and regional downstream environments. However, the origin and bioreactivity of dissolved organic carbon 29 30 from glacier surfaces are not fully understood. Here, we present data comprising of simultaneous measurements of gross primary production, community respiration, dissolved 31 32 organic carbon composition and export from different surface habitats of the Greenland Ice 33 Sheet, throughout the ablation season. We found that microbial production was significantly 34 correlated with the concentration of labile dissolved organic species in glacier surface 35 meltwater (Pearson correlation p<0.001). Further, we determined that freely-available organic 36 compounds made up 62% of the dissolved organic carbon exported from the glacier surface 37 through streams. We therefore conclude that microbial communities were the primary driver 38 for labile dissolved organic carbon production and recycling on glacier surfaces (up to $1.12 \pm$ 0.14 mg C $L^{-1}d^{-1}$ carbon production), and that glacier dissolved organic carbon export is 39 40 dependent on active microbial processes during the melt season.

43	The Greenland Ice Sheet (GrIS) is the second largest body of ice on Earth, after the Antarctic
44	Ice Sheet, covering $\sim 1.71 \times 10^6 \text{ km}^{21}$. The GrIS has ~ 350 ocean-terminating outlets ² and an
45	annual meltwater runoff of $\sim 400 \text{ km}^3$, comparable to the average annual discharge from a
46	large Arctic river, such as the Ob ^{3, 4, 5} . Recent studies have found glacial runoff to be a
47	significant source of highly bioavailable nutrients to downstream ecosystems ^{3, 6, 7, 8} . In
48	particular, glacial meltwater exports labile dissolved organic carbon (DOC), which is rich in
49	protein-like low molecular weight compounds (LMWC) and distinct from non-glacially
50	derived riverine DOC ^{3, 8} , which has a high proportion of aromatic and higher molecular
51	weight compounds9. High glacial meltwater fluxes, therefore, have an important impact on
52	downstream marine heterotrophic and primary productivity on local ¹⁰ and regional scales ¹¹ .
53	The origin and nature of the glacial dissolved organic matter (DOM) is still a subject of
54	debate. In the Gulf of Alaska, labile DOM exported by glacier runoff from 11 coastal
55	watersheds has an ancient (~4x10 ³ year) ¹⁴ C age signature ⁷ . Stubbins <i>et al.</i> (2012) ¹² have
56	suggested that anthropogenic combustion products are the source of the ancient organic
57	carbon to glacier surfaces, which account for the ¹⁴ C-depletion observed by Hood <i>et al</i> .
58	$(2009)^7$. On the other hand, Singer <i>et al.</i> $(2012)^{13}$ found that combustion products only
59	marginally contribute to the DOM from Alpine glaciers and that the DOM is more likely
60	derived from <i>in situ</i> microbial activity. So far, there have been very few studies on the origin
61	of the GrIS DOC, even though the GrIS runoff has been substantially increasing since 1992 at
62	a rate of $16.9 \pm 1.8 \text{ km}^3 \text{ yr}^{-1.5}$. The climatically driven changes in GrIS meltwater fluxes ¹⁴
63	could thus dramatically increase the quantity of reactive glacial DOC exported to the coastal
64	waters surrounding Greenland ^{3, 7, 15} .
65	Previous work has concentrated on the discharge of DOC from glacial termini, with only

66 limited complementary water sampling and studies of supraglacial (glacier surface) microbial

67 processes on the GrIS.^{3, 8, 16}. The supraglacial DOC measured to date had a terrestrial δ^{13} C

68	signature and was rich in nitrogen ¹⁶ . Conversely, the subglacial DOC contained
69	allochthonous-derived carbon both from soils and vegetation, as well as carbon derived from
70	microbial processes ^{3, 16} . The limited data suggested that autochthonous microbial activity
71	accounted for the majority of the supraglacial DOC. Lawson et al. (2014) ⁸ also studied DOC
72	concentrations in glacial runoff from an outlet glacier at the southwestern margin of the GrIS,
73	with a focus on the quality, quantity and temporal variation of DOC fluxes over two
74	contrasting melt seasons. They postulated that the physicochemical and microbiological
75	cycling of carbon at the glacier surface is a major source of the bioavailable DOC,
76	complemented by biogeochemical processes at the ice sheet bed ^{8, 17} .
77	Autotrophic microbial communities at the glacier surface are believed to fix atmospheric
78	carbon and thereby generate bioavailable autochthonous DOC (including LMWC) through
79	photosynthesis, while heterotrophic processes consume and recycle this labile DOC ^{16, 18, 19, 20} .
80	The balance between net production and consumption varies between sampling sites on the
81	GrIS ^{18, 21, 22, 23, 24} . The highest microbial activity is commonly concentrated in glacier surface
82	debris (cryoconite) ^{18, 25, 26} . Enhanced melting of the ice surface around the dark-coloured
83	cryoconite leads to the formation of small (0.01-1 m in diameter and 0.01-0.5 m deep) water-
84	filled, debris-based depressions, called 'cryoconite holes' ^{27, 28, 29} . Cryoconite and cryoconite
85	hole waters host abundant viruses, prokaryotes and eukaryotes responsible for the
86	biogeochemical cycling of carbon and other nutrients ^{30, 31, 32} . Bare ice and snow also contains
87	a wide variety of microorganisms, including $algae^{33}$, which may fix substantially more CO_2
88	than cryoconite holes because of the greater spatial extent of this habitat ^{24, 34} .
89	However, the link between supraglacial autochthonous microbial DOC production and GrIS
90	DOC export has only been postulated until now. To date, no study has analysed the inputs
91	and transformations of the DOC in parallel with the microbial net ecosystem production
92	(NEP) on the GrIS surface, throughout a complete ablation season. NEP is defined as the

93	difference between gross photosynthetic (GP) organic carbon (C) production and
94	consumption through respiration (R) in an ecosystem, where NEP = GP - R^{35} . Furthermore,
95	previous studies have not assessed the evolution of the microbial activity over an entire
96	summer melt season and how it impacts on the characteristics of exported DOC. Here, for the
97	first time, the changes in DOC species and concentrations were analysed in different GrIS
98	supraglacial habitats (snow, clean ice, cryoconite debris and cryoconite holes) in association
99	with measurements of GP and R. We determined the: 1) external sources of C added to
100	supraglacial ecosystems; 2) consumption and production of new C by local microbial
101	communities; and 3) the nature of the DOC that was exported from the glacier through
102	supraglacial streams to downstream environments, during an entire melt season.
103	
104	Sampling was conducted on Leverett Glacier (~67.10°N, 50.20°W) in the southwest of the
105	GrIS. The sampling site was a delimited circular area 8 m in diameter, chosen randomly ~ 2
106	km from the terminus of the glacier. Dispersed cryoconite debris on the glacier surface ('dirty
107	ice'), clean ice, stream water, cryoconite hole water ('cryowater') and cryoconite hole
108	sediment were sampled once every 10-14 days, during the 2012 ablation season, between 15 th
109	May and 1 st August. Ice cores were collected during the first two sampling time points in
110	order to analyse the contents of the ice frozen over winter, which was released as meltwater
111	later in the season. Waters were collected from supraglacial streams flowing away from the
112	sampling site into a nearby moulin, which supplies the drainage system beneath the glacier
113	and the river emerging from Leverett Glacier ³⁶ . Snow samples were collected on May 13 th ,
114	before snowmelt had occurred and thus the snowpack had minimal to no meltwaters
115	disturbing it. The surface snow turned to slush by 15 th May, before melting away by 20 th
116	May. The collected samples were divided into three different sample types: principal sources
117	of meltwater (snow and ice – studied through the ice cores), supraglacial habitats (dirty ice,

clean ice, cryowater and cryoconite hole sediment) and exported meltwater (stream). GP and
R was determined for all of the supraglacial habitats throughout the melt season.
Fluorescence spectroscopy and measurements of the concentration of DOC and LMWC (free
carbohydrates, amino acids and volatile fatty acids (VFA)) were performed on all samples
(see Methods).

123

- 124 Highly active and net autotrophic ecosystems
- 125

126 All four habitat types studied were active and net autotrophic ecosystems, producing 127 significantly more organic C through GP than that being consumed by R. These data are 128 presented as GP = NEP + R in Figure 1a and R in Figure 1b for all the incubations. There 129 were significant differences in C production between the habitat types throughout the season 130 (2-way ANOVA, p<0.001). The highest photosynthetic activity in all sample types was at the beginning of the ablation season (0.35-1.12 mg C $L^{-1}d^{-1}$ of C production), equal to 0.28-0.82 131 mg C $L^{-1}d^{-1}$ of NEP (GP - R). This was followed by a sharp decrease in GP rates until the 132 rates stabilised around 0.06-0.27 mg C $L^{-1}d^{-1}$ of C production (0.03-0.18 mg C $L^{-1}d^{-1}$ of 133 134 NEP) in June and July, before increasing slightly at the end of the summer. NEP, GP and R 135 rates measured at this site ~ 2 km from the GrIS margin were comparable to the rates measured over the same summer 35 km from the GrIS margin²⁴. Previous NEP measurements 136 on the GrIS have been of short duration only, providing 'snap-shots' of the microbial 137 138 activities at a certain time, and therefore missed the varying trends in NEP over the ablation 139 season. 140 141 All averaged synchronous fluorescence spectra of the supraglacial samples (where λ emission

142 = λ excitation + 18 nm) exhibited the same dominant fluorescence emission peaks (~337,

409-420, 465-479 and ~523 nm), but with varying intensities (Figure 2). The averaged 143 144 fluorescence spectra for all of the samples were normalised to the fluorescence peak spectral 145 maximum, by dividing the intensity of the emissions measured by the maximum emission 146 intensity that was measured in the entire dataset, to qualitatively assess the proportions of the proteinaceous-like and humic-like fluorophores in the DOC^{8, 37, 38}. Fluorescence emission 147 peaks at \sim 337 nm are indicative of protein-like fluorophores (e.g. tryptophan)³⁹, and peaks in 148 the range of 409-420, 465-479 and ~523 nm are likely associated with humic and fulvic acid 149 compounds^{39, 40, 41}. The snow samples exhibited the lowest normalised spectral fluorescence, 150 151 together with the ice cores (, apart from the large peak at 337 nm). By contrast, cryowater had 152 an extremely strong peak at 409-420 nm, which was significantly greater than the normalised 153 fluorescence intensity of the other samples at that wavelength. The similarity between the 154 dirty ice and stream spectra is noteworthy, while the average normalized clean ice 155 fluorescence intensity was in between the stream and snow spectra. Additionally, the clean 156 ice, dirty ice and stream samples had a peak at 575 nm, unlike the other samples. This peak is often associated with the algal photosynthetic pigment phycoerithin^{8,42}. Similar compounds 157 have been detected previously in supraglacial meltwaters, snow and cryowater^{8, 16}. The 158 159 presence of fulvic and humic acids, protein-like fluorophores and an algal pigment substantiate our hypothesis that the DOC in all sample types is mostly microbially-derived 160 from photosynthetic algae and bacterial communities^{16, 43, 44}. Microbial modification of the 161 autochthonous-derived supraglacial DOC and allochthonous OC into additional bioavailable 162 163 compounds, through bacterial decomposition, is potentially the source of the significant amounts of humic acids in the cryoconite holes^{28, 45}. It is also possible that the fulvic and 164 165 humic acids in cryoconites holes could be derived from allochthonous inputs of higher plant material^{16, 43, 44}. 166

167

170	There were also significant differences in DOC concentrations between the sample types over
171	the whole season (2-way ANOVA, p<0.001) (Figure 3). The dirty and clean ice had the
172	highest concentrations of DOC at the start of the season (up to 0.32 ± 0.02 mg C L ⁻¹), before
173	decreasing to 0.18 ± 0.02 mg C L ⁻¹ by the end of the melt season. Cryowater DOC remained at
174	a fairly constant concentration of 0.15 ± 0.01 mg C L ⁻¹ , which was mirrored in the cryowater
175	GP rates remaining steady throughout the ablation season as well. Stream DOC
176	concentrations started off very low in mid-May (0.09 \pm 0.01 mg C L ⁻¹). They then peaked in
177	mid-July 2012 (0.23 \pm 0.04 mg C L ⁻¹), before decreasing again at the end of the summer. The
178	decline in surface ice DOC concentrations was most likely a result of the decreasing GP
179	activity over the melt season (Figure 1) and continuous heterotrophic consumption.
180	Conversely, the ice cores collected at the beginning of the season had much lower DOC
181	concentrations (0.14 \pm 0.02 mg C L ⁻¹) than the dirty/clean ice samples, and the snow samples
182	had the lowest DOC concentrations (0.06 \pm 0.01 mg C L ⁻¹). This is in agreement with the
183	hypothesis that NEP throughout the melt season produces the DOC. Moreover, continuous
184	ice melt over the ablation season also led to fresh glacier surfaces being uncovered (not
185	colonised by microbes), thereby diluting the exported DOC. The drop in dirty/clean ice
186	productivity could also be indicative of a limitation in vital nutrients for microbial activity,
187	such as nitrogen and phosphorous in the surface ice, although some recycling potentially
188	stimulated new microbial production towards the end of the season.
189	
190	The total LMWC concentrations for all of the supraglacial habitats, over the whole ablation
191	season, accounted for ~59% of the average DOC concentrations for these habitats (Table 1).

192 In contrast, only \sim 41% of the average DOC in snow and ice core samples was made up of

193	LMWC. Overall, ~62% of the DOC exported from the glacier surface, via the studied stream,
194	contained bioavailable LMWC. The variations in LMWC concentrations for all sample types,
195	throughout the 2012 ablation season, are displayed in Figure 4. Carbohydrates had the highest
196	LMWC concentrations (up to 190.9 \pm 24.0 µg C L ⁻¹), while the amino acids and VFA
197	concentrations only peaked at 67.5±8.4 and 20.6±2.5 μ g C L ⁻¹ , respectively. There were
198	significant differences between the carbohydrate concentrations of the snow and ice core
199	samples, and those of the supraglacial habitats (2-way ANOVA, p<0.01). Amino acid
200	concentrations for all sample types peaked in June 2012. The averaged seasonal individual
201	free amino acid, carbohydrate and VFA concentrations, for all sample types, are shown in
202	Supplementary Information Tables 1-3. These concentrations are consistent with previously
203	reported DOC and LMWC in supraglacial samples ^{3, 8, 16} . The high concentrations of
204	bioavailable LMWC observed here (e.g. glucose, galactose and tyrosine) could be associated
205	with recent microbial photosynthetic activity and biosynthesis ^{45, 46, 47} .
206	

Both the DOC and LMWC concentrations in dirty/clean ice samples were higher than those 207 in the principal sources of meltwater (one-way ANOVA; p<0.001 and p<0.01, respectively) 208 at the beginning of the season. For example, DOC in ice cores and snow only contributed to 209 210 approximately one third of the surface DOC concentrations (Figure 3). There were significant correlations between the total LMWC and DOC concentrations (Pearson correlation's $R^2 =$ 211 0.48, p<0.001) and the total free carbohydrate and DOC concentrations (Pearson correlation's 212 $R^2 = 0.46$, p<0.001), for the clean/dirty ice, ice core and snow samples (Figure 5). Our results 213 214 therefore show that supraglacial DOC is made up of significant amounts of labile LMWC, 215 which vary in concentrations and individual compound content over the summer season. 216 However, there was no positive correlation between the LMWC and DOC for the cryowater 217 samples. The cryowater DOC thus likely contains greater amounts of higher molecular

218	weight compounds, such as humic and fulvic acids. This is in agreement with
219	spectrofluorescence data (Figure 2), indicating great amounts of humic and fulvic type
220	compounds in cryowater than in the other samples. Consequently, microbial processes in
221	clean/dirty ice appear to be primarily responsible for the net production of labile DOC,
222	particularly at the start of the season, while microbial communities in cryoconite holes have a
223	greater importance in modifying and decomposing organic matter from both autochthonous
224	and allochthonous origin. It is highly likely that the DOC and LMWC, remaining in the
225	supraglacial environments at the end of the ablation season (Figure 3-4), freeze into the
226	surface ice over winter and are then released the following ablation season through ice melt.
227	We hypothesize, therefore, that even the DOC and LMWC measured in the ice cores likely
228	originated from the microbial DOC produced during previous seasons. Hence, the
229	supraglacial C source was primarily autochthonous and not derived from external
230	allochthonous sources, such as recent snowfall.
231	
232	Microbially-driven supraglacial DOC export
233	
234	Microbial GP C production in all of the supraglacial habitats was significantly correlated with
235	labile LMWC and free carbohydrate concentrations (Pearson correlation's $R^2 = 0.49$,
236	p<0.001; and $R^2 = 0.59$, p<0.001, respectively), throughout the 2012 ablation season (Figure
237	5). There were also significant correlations, for dirty and clean ice samples, between the
238	LMWC concentrations and GP C production ($R^2 = 0.30$, p<0.05 and $R^2 = 0.69$, p<0.001,
239	respectively) and carbohydrate concentrations and GP C production ($R^2 = 0.48$, p<0.001and
240	$R^2 = 0.64$, p<0.001, respectively). In cryowater, there was a significant correlation between
241	the carbohydrate concentrations and GP C production ($R^2 = 0.23$, p<0.05), but not between

LMWC (e.g. amino acids and VFA) are due to the microbial modification and decomposition
of organic matter in cryoconite holes, with potentially some additional allochthonous inputs,
as hypothesized above.

246

247 Our results suggest that most of the bioavailable supraglacial DOC is a result of *in situ* 248 microbial GP activity. All of the supraglacial habitats on the margin of the GrIS were net 249 autotrophic ecosystems, producing substantially more C through GP than what was consumed by R throughout the whole melt season (Figure 1). They were thus the most important source 250 251 of supraglacial DOC, based on the significant correlations between the GP C production, 252 DOC, LMWC and free carbohydrate concentrations examined previously. We also infer that 253 heterotrophic microbial communities were actively modifying the DOC by consuming and 254 decomposing both autochthonous and allochthonous C, particularly in cryoconite holes. 255 Therefore, the high and continuous levels of microbial DOC production and recycling, on the 256 GrIS surface in 2012, demonstrate that glacier surfaces are not just passive receivers and exporters of ancient labile carbon to downstream ecosystems⁷. Furthermore, these ecosystems 257 258 were very active and dynamic over the course of one the ablation season, leading to varying 259 amounts and types of DOC exported from the GrIS surface to downstream environments 260 (Figures 3-4). The export of DOC to the moulin peaked in mid-July 2012, before decreasing 261 again at the end of the summer. On average, the DOC exported by the supraglacial stream 262 contained a concentration of microbially-derived fluorophores most similar to that of dirty ice 263 habitats (Figure 2) and ~62% bioavailable LMWC (Table 1). The substantial microbial contribution to DOC production and transformation must, therefore, be included in future 264 265 estimates of climate change driven DOC export from the GrIS and its effects on the 266 downstream ecosystems.

267

References

269		
270	1.	Easterbrook DJ, Ollier CD, Carter RM. Observations: The Cryosphere. Climate
271		Change Reconsidered II 2013: 629-712.
272		
273	2.	Lewis SM, Smith LC. Hydrologic drainage of the Greenland Ice Sheet. Hydrol
274		Process 2009, 23: 2004-2011.
275		
276	3.	Bhatia MP, Das SB, Xu L, Charette MA, Wadham JL, Kujawinski EB. Organic
277		carbon export from the Greenland ice sheet. Geochim Cosmochim Ac 2013, 109: 329-
278		344.
279		
280	4.	Dittmar T, Kattner G. The biogeochemistry of the river and shelf ecosystem of the
281		Arctic Ocean: a review. Mar Chem 2003, 83: 103-120.
282		
283	5.	Bamber J, van den Broeke M, Ettema J, Lenaerts J, Rignot E. Recent large increases
284		in freshwater fluxes from Greenland into the North Atlantic. Geophys Res Lett 2012,
285		39: L19501.
286		
287	6.	Bhatia MP, Kujawinski EB, Das SB, Breier CF, Henderson PB, Charette MA.
288		Greenland meltwater as a significant and potentially bioavailable source of iron to the
289		ocean. Nat Geosci 2013, 6: 274-278.
290		

291	7.	Hood E, Fellman J, Spencer RGM, Hernes PJ, Edwards R, D'Amore D, et al. Glaciers
292		as a source of ancient and labile organic matter to the marine environment. Nature
293		2009, 462: 1044-U1100.
294		
295	8.	Lawson EC, Wadham JL, Tranter M, Stibal M, Lis GP, Butler CEH, et al. Greenland
296		Ice Sheet exports labile organic carbon to the Arctic oceans. <i>Biogeosciences</i> 2014, 11:
297		4015-4028.
298		
299	9.	Repeta DJ, Quan TM, Aluwihare LI, Accardi A. Chemical characterization of high
300		molecular weight dissolved organic matter in fresh and marine waters. Geochim
301		Cosmochim Ac 2002, 66: 955-962.
302		
303	10.	Rysgaard S, Vang T, Stjernholm M, Rasmussen B, Windelin A, Kiilsholm S. Physical
304		conditions, carbon transport, and climate change impacts in a northeast Greenland
305		fjord. Arct Antarct Alp Res 2003, 35: 301-312.
306		
307	11.	Statham PJ, Skidmore M, Tranter M. Inputs of glacially derived dissolved and
308		colloidal iron to the coastal ocean and implications for primary productivity. Global
309		<i>Biogeochem Cy</i> 2008, 22: Gb3013.
310		
311	12.	Stubbins A, Hood E, Raymond PA, Aiken GR, Sleighter RL, Hernes PJ, et al.
312		Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers.
313		Nat Geosci 2012, 5: 198-201.
314		

315	13.	Singer GA, Fasching C, Wilhelm L, Niggemann J, Steier P, Dittmar T, et al.
316		Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate.
317		<i>Nat Geosci</i> 2012, 5: 710-714.
318		
319	14.	Hanna E, Huybrechts P, Steffen K, Cappelen J, Huff R, Shuman C, et al. Increased
320		runoff from melt from the Greenland Ice Sheet: A response to global warming. J
321		<i>Climate</i> 2008, 21: 331-341.
322		
323	15.	Hood E, Battin TJ, Fellman J, O'Neel S, Spencer RGM. Storage and release of
324		organic carbon from glaciers and ice sheets. Nature Geosci 2015, 8: 91-96.
325		
326	16.	Bhatia MP, Das SB, Longnecker K, Charette MA, Kujawinski EB. Molecular
327		characterization of dissolved organic matter associated with the Greenland ice sheet.
328		Geochim Cosmochim Ac 2010, 74: 3768-3784.
329		
330	17.	Lawson EC, Bhatia MP, Wadham JL, Kujawinski EB. Continuous Summer Export of
331		Nitrogen-Rich Organic Matter from the Greenland Ice Sheet Inferred by Ultrahigh
332		Resolution Mass Spectrometry. Environ Sci Technol 2014, 48: 14248-14257.
333		
334	18.	Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B. High microbial activity on
335		glaciers: importance to the global carbon cycle. Global Change Biol 2009, 15: 955-
336		960.
337		

338	19.	Anesio AM, Sattler B, Foreman C, Telling J, Hodson A, Tranter M, et al. Carbon
339		fluxes through bacterial communities on glacier surfaces. Ann Glaciol 2010, 51: 32-
340		40.
341		
342	20.	Hodson A, Anesio AM, Ng F, Watson R, Quirk J, Irvine-Fynn T, et al. A glacier
343		respires: Quantifying the distribution and respiration CO2 flux of cryoconite across an
344		entire Arctic supraglacial ecosystem. Journal of Geophysical Research:
345		Biogeosciences 2007, 112: G04S36.
346		
347	21.	Hodson A, Boggild C, Hanna E, Huybrechts P, Langford H, Cameron K, et al. The
348		cryoconite ecosystem on the Greenland ice sheet. Ann Glaciol 2010, 51: 123-129.
349		
350	22.	Stibal M, Telling J, Cook J, Mak KM, Hodson A, Anesio AM. Environmental
351		Controls on Microbial Abundance and Activity on the Greenland Ice Sheet: A
352		Multivariate Analysis Approach. Microb Ecol 2012, 63: 74-84.
353		
354	23.	Cook JM, Hodson AJ, Anesio AM, Hanna E, Yallop M, Stibal M, et al. An improved
355		estimate of microbially mediated carbon fluxes from the Greenland ice sheet. J
356		<i>Glaciol</i> 2012, 58: 1098-1108.
357		
358	24.	Chandler DM, Alcock JD, Wadham JL, Mackie SL, Telling J. Seasonal changes of ice
359		surface characteristics and productivity in the ablation zone of the Greenland Ice
360		Sheet. The Cryosphere Discuss 2014, 8: 1337-1382.

362	25.	Tranter M, Fountain AG, Fritsen CH, Lyons WB, Priscu JC, Statham PJ, et al.
363		Extreme hydrochemical conditions in natural microcosms entombed within Antarctic
364		ice. Hydrol Process 2004, 18: 379-387.
365		
366	26.	Hodson AJ, Mumford PN, Kohler J, Wynn PM. The High Arctic glacial ecosystem:
367		new insights from nutrient budgets. Biogeochemistry 2005, 72: 233-256.
368		
369	27.	Gerdel RW, Drouet F. The cryoconite of the Thule Area, Greenland. Trans Am
370		<i>Microsc Soc</i> 1960, 79: 256–272.
371		
372	28.	Takeuchi N, Kohshima S, Seko K. Structure, formation, and darkening process of
373		albedo-reducing material (cryoconite) on a Himalayan glacier: A granular algal mat
374		growing on the glacier. Arct Antarct Alp Res 2001, 33: 115-122.
375		
376	29.	Fountain AG, Tranter M, Nylen TH, Lewis KJ, Mueller DR. Evolution of cryoconite
377		holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry
378		Valleys, Antarctica. J Glaciol 2004, 50: 35-45.
379		
380	30.	Sawstrom C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J. The microbial
381		communities and primary productivity of cryoconite holes in an Arctic glacier
382		(Svalbard 79 degrees N). Polar Biol 2002, 25: 591-596.

384	31.	Anesio AM, Mindl B, Laybourn-Parry J, Hodson AJ, Sattler B. Viral dynamics in
385		cryoconite holes on a high Arctic glacier (Svalbard). Journal of Geophysical
386		Research: Biogeosciences 2007, 112: G04S31.
387		
388	32.	Edwards A, Anesio AM, Rassner SM, Sattler B, Hubbard B, Perkins WT, et al.
389		Possible interactions between bacterial diversity, microbial activity and supraglacial
390		hydrology of cryoconite holes in Svalbard. Isme J 2011, 5: 150-160.
391		
392	33.	Cameron KA, Hagedorn B, Dieser M, Christner BC, Choquette K, Sletten R, et al.
393		Diversity and potential sources of microbiota associated with snow on western
394		portions of the Greenland Ice Sheet. Environ Microbiol 2015, 17: 594-609.
395		
396	34.	Yallop ML, Anesio AM, Perkins RG, Cook J, Telling J, Fagan D, et al.
397		Photophysiology and albedo-changing potential of the ice algal community on the
398		surface of the Greenland ice sheet. <i>Isme J</i> 2012, 6: 2302-2313.
200		
400	35	Lovett GM Cole II. Pace ML Is Net Ecosystem Production Equal to Ecosystem
400	55.	Carbon Accumulation? <i>Ecosystems</i> 2006 9 : 152-155
101		
402	• (
403	36.	Chandler DM, Wadham JL, Lis GP, Cowton T, Sole A, Bartholomew I, et al.
404		Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed
405		by tracers. <i>Nat Geosci</i> 2013, 6: 195-198.
406		

407	37.	Chen J, LeBoef EJ, Dai S, Gu BH. Fluorescence spectroscopic studies of natural
408		organic matter fractions. Chemosphere 2003, 50: 639-647.
409		
410	38.	Baker A, Lamont-Black J. Fluorescence of dissolved organic matter as a natural tracer
411		of ground water. Ground Water 2001, 39: 745-750.
412		
413	39.	Hudson N, Baker A, Reynolds D. Fluorescence analysis of dissolved organic matter
414		in natural, waste and polluted waters - A review. River Res Appl 2007, 23: 631-649.
415		
416	40.	Miano TM, Senesi N. Synchronous Excitation Fluorescence Spectroscopy Applied to
417		Soil Humic Substances Chemistry. Sci Total Environ 1992, 118: 41-51.
418		
419	41.	Ferrari GM, Mingazzini M. Synchronous Fluorescence-Spectra of Dissolved Organic-
420		Matter (Dom) of Algal Origin in Marine Coastal Waters. Mar Ecol Prog Ser 1995,
421		125: 305-315.
422		
423	42.	Lombardi AT, Jardim WF. Fluorescence spectroscopy of high performance liquid
424		chromatography fractionated marine and terrestrial organic materials. Water Res
425		1999, 33: 512-520.
426		
427	43.	Lafreniere MJ, Sharp MJ. The concentration and fluorescence of dissolved organic
428		carbon (DOC) in glacial and nonglacial catchments: Interpreting hydrological flow
429		routing and DOC sources. Arct Antarct Alp Res 2004, 36: 156-165.

430		
431	44.	Barker JD, Sharp MJ, Fitzsimons SJ, Turner RJ. Abundance and dynamics of
432		dissolved organic carbon in glacier systems. Arct Antarct Alp Res 2006, 38: 163-172.
433		
434	45.	Barker JD, Sharp MJ, Turner RJ. Using synchronous fluorescence spectroscopy and
435		principal components analysis to monitor dissolved organic matter dynamics in a
436		glacier system. Hydrol Process 2009, 23: 1487-1500.
437		
438	46.	Biersmith A, Benner R. Carbohydrates in phytoplankton and freshly produced
439		dissolved organic matter. Mar Chem 1998, 63: 131-144.
440		
441	47.	Kirchman DL, Meon B, Ducklow HW, Carlson CA, Hansell DA, Steward GF.
442		Glucose fluxes and concentrations of dissolved combined neutral sugars
443		(polysaccharides) in the Ross Sea and Polar Front Zone, Antarctica. Deep-Sea Res Pt
444		<i>Ii</i> 2001, 48: 4179-4197.
445		
446	Acknowledgements	
447	This st	udy was funded by grants from the UK National Environment Research Council
448	(NERC) NE/J02399X/1 to Anesio, NERC Doctoral Training Program Grant to Musilova,	
449	NERC grant NE/H023879/1 to Wadham and NERC studentships NE/152830X/1 and	
450	NE/J50	00021/1 to Tedstone. We would like to thank all members of the Greenland 2012
451	Levere	tt field team for their assistance during field work.

453	Author Contributions:
454	M.M., A.M.A and J.T. designed the overall study. M.T. and J.W. were involved in advising
455	the detail of the study design. M.M. and A.T. collected the field data. M.M. performed the
456	experiment and processed the data. M.M., A.M.A. and M.T. wrote the paper. All authors
457	discussed the results and commented on the manuscript.
458	
459	Corresponding author:
460	Dr. Michaela Musilova
461	email: michaela.musilova@community.isunet.edu
462	
463	Competing financial interests
464	The authors declare that they have no competing financial interests.
465	Figure legends:
466	
467	Figure 1. Gross photosynthesis [GP; net ecosystem production (NEP) + respiration (R)] and
468	R variability over one ablation season is shown in panels a and b, respectively, in the
469	different supraglacial habitats. GP and R rates are expressed in mg C $L^{-1}d^{-1}$ as C produced
470	through photosynthesis and C consumed through R, respectively. All of the habitats sampled
471	were net autotrophic ecosystems, producing more C from CO ₂ through photosynthesis than
472	what was being consumed through respiration. Standard errors were calculated as 1σ with n =
473	3.
474	

Figure 2. Averaged synchronous fluorescence spectra collected over the entire summer 2012 for the studied glacier surface sample types (where λ emission = λ excitation + 18 nm). All averaged spectra have been normalised to the fluorescence peak spectral maximum, by dividing the intensity of the emissions measured by the maximum emission intensity that was measured in the entire dataset, to assess the proportions of fluorophores in dissolved organic carbon. The same dominant fluorescence emission peaks (at ~337, 409-420, 465-479 and ~523 nm excitation) were present in all sample types.

482

Figure 3. Variations in 2012 ablation season DOC concentrations in supraglacial samples (in 483 mg C L^{-1}). There were significant differences in DOC concentrations between the sample 484 485 types over the season (2-way ANOVA, p<0.001). All sample types exhibited a decline in 486 DOC at the end of the season, except for cryowater. Cryowater DOC remained fairly constantly at 0.15 ± 0.01 mg C L⁻¹ throughout the ablation season. Snow and ice core samples 487 488 were collected at the beginning of the ablation season to estimate the addition of DOC from 489 external sources to the supraglacial environments. Standard errors were calculated as 1σ (n = 490 6).

491

Figure 4. Variations in supraglacial low molecular weight compound concentrations (LMWC) of total free: a) amino acids, b) carbohydrates and c) volatile fatty acids (VFA) for all sample types, per sampling time point, throughout the 2012 ablation season. Standard errors were calculated as 1σ with n = 84, n = 54 and n = 30, respectively.

496

Figure 5. Total LMWC (a) and free carbohydrates (b) were compared vs. DOC, throughout

498 the 2012 ablation season, for: all supraglacial habitat samples n = 21 (7 averaged samples

each of cryowater, dirty ice and clean ice (where n=3 per sample type, per time point), n=2

for the ice cores and n = 1 for the snow). Total LMWC (c) and free carbohydrates (d) were

501 compared vs. GP C production, throughout the 2012 ablation season, for: cryowater, dirty ice,

and clean ice (n = 63), where there are 21 samples of cryowater, dirty ice and clean ice each).

503

Table 1. Total LMWC concentrations for all of the different sample types, averaged over the whole 2012 ablation season. The LMWC component of the average DOC is indicated for the supraglacial habitats (dirty ice, clean ice and cryowater), principal sources of meltwater (snow and ice – studied through ice cores) and for the DOC exported through the studied stream. Detailed data for each individual LMWC is provided in the Supplementary Information Tables 1-3. Standard errors were calculated as 1σ with n = 3528, n = 2268 and n

= 1260, for amino acids, carbohydrates and VFA, respectively.

LMWC	Total LMWC concentration for all sample types (μgCL ⁻¹)	Total LMWC component of supraglacial habitat DOC (%)	Total LMWC component of meltwater DOC (%)	Total LMWC component of exported DOC (%)	
amino acids	37.81 ± 4.25	19.03 ± 0.02	21.06 ± 0.05	21.87 ± 0.03	
carbohydrates	61.58 ± 10.14	33.16 ± 0.45	12.37 ± 1.04	32.40 ± 0.59	
VFA	13.54 ± 1.77	6.81 ± 0.01	7.90 ± 0.02	7.78 ± 0.02	
Sum of all LMWC	112.93 ± 11.14	59.00 ± 0.45	41.33 ± 1.03	62.05 ± 0.59	

511

512

- 513
- 514
- 515
- 516

517

518

519 Methods

521 Field sampling strategy

522 All sample types were collected aseptically into sterile Whirl-Pak bags (Nasco) during the 2012 ablation season (15th May, 28th May, 11th June, 25th June, 9th July, 23rd July and 1st 523 August). Cryoconite hole, snow and clean/dirty ice sampling, within the delimited sampling 524 site, is described in detail in Musilova *et al.* $(2015)^{48}$. The dirty ice had sediment particle 525 sizes <1 mm and was present in patches within the sampling area⁴⁸, while the clean ice did 526 527 not have any visible sediment particles on nor within the ice. Seventy cm deep ice cores were 528 drilled using a Kovacs ice corer (cleaned by drilling three non-sample cores, since sterilisation for molecular level studies was not necessary) and collected in sterile 5 L Whirl-529 530 Pak bags (Nasco). They were drilled in the same location over both the first and consecutive 531 second sampling time points, in order to analyse the meltwater released through surface ice 532 melting down to ~140 cm. Cryowater and stream water was collected using sterile 50 mL syringes (Fisher) into pre-cleaned (rinsed 6x with sterile Milli-O water (18.2 M Ω cm⁻¹ 533 534 deionized water, filtered through 0.22 µm membranes)) and pre-furnaced (550°C for 4 hours) 535 borosilicate glass bottles, prior to transport. All samples were transported to the field camp 536 laboratory for processing <2 hrs after collection. Snow and ice samples were melted at 537 ambient temperature ($\sim 10^{\circ}$ C) upon transportation to the field camp laboratory. All samples 538 were filtered immediately through a pre-cleaned and pre-furnaced glass filtration apparatus 539 into pre-furnaced borosilicate amber glass bottles. Pre-furnaced 0.70 µm GF/F (Millipore) 540 filters were used for DOC analyses and inline (0.45 μ m; Millipore) filters were used for LMWC analyses. Filtrates for DOC analyses were acidified to pH 2-3 with concentrated HCl 541 and stored at $\leq 4^{\circ}$ C in the field laboratory, during transport and storage at the University of 542 543 Bristol. The other samples were frozen at \leq -20°C in the field freezer, during transport (in 544 insulated containers) and storage at the University of Bristol prior to laboratory analyses, as

545	had been performed successfully previously Lawson et al. (2014) ⁸ . Triplicate procedural
546	blanks were carried out by collecting autoclaved Milli-Q water into the same
547	containers/Whirl-Pak bags as the samples, filtering it and storing it using the same procedure
548	as applied for the samples.

550 NEP measurements

551

NEP is defined as the difference between gross photosynthetic (GP) organic carbon (C) 552 production and consumption through respiration (R) in an ecosystem, where NEP = GP - R^{35} . 553 554 It was determined by incubating six glass bottles per sample, filled with the different 555 supraglacial sample types (cryowater, cryoconite hole sediment, dirty and clean ice) for 24±1 h within cryoconite holes in *in situ* conditions, following previously described methods^{24, 49}. 556 557 Three out of the six bottles were wrapped in foil to prevent light from entering the bottles (in order to only measure respiration), while the other three remained unwrapped to allow for 558 photosynthesis, as well as respiration (to measure NEP)²³. For the cryoconite hole samples, 559 560 the debris thickness in the bottles was representative of that in the holes (\sim 1-4 mm thick) and bottles were filled with water collected from the same holes as the debris^{24, 49}. The ice 561 samples were melted before pouring into the bottles, as per Chandler et al. $(2014)^{24}$. Changes 562 563 between the start and end dissolved O_2 concentrations and temperatures in the incubation 564 bottles were measured immediately, after the incubations had finished on the surface of the 565 glacier, using a PreSens Fibox3 fibreoptic O₂ meter with a type PSt1 TS sensor (manufacturer's stated accuracy: $\pm 1\%$). These measurements were normalized for the 566 different dry weights of the sediment in the bottles, determined by drying and weighing the 567 sediment, then converted to mg C $L^{-1} d^{-1}$ using a programme for temperature-compensated 568 569 oxygen calculation for PreSens oxygen microsensors (Huber, C., 6.2.2003 – personal

570	communication) and following previously described methods ^{24, 49} . Altogether, seven different
571	incubation experiments were performed at regular intervals throughout the 2012 GrIS

572 ablation season.

573

574

575 **DOC analyses**

576

577 DOC concentrations were measured in all sample types as non-purgeable organic carbon by

578 high temperature combustion (680°C), using a Shimadzu TOC-VCSN/TNM-1 Analyser

equipped with a high sensitivity catalyst, following the methods described by Lawson *et al.*

580 $(2014)^8$. The precision, accuracy and limit of detection of the method were <7%, <8% and 30

581 μ g C L⁻¹, determined as per Lawson *et al.* (2014)⁸.

582

583 LMWC concentrations

584

585 Free carbohydrate, amino acid and VFA determinations were performed by an ICS-3000

586 dual-analysis Reagent-Free Ion Chromatography system (Dionex, Sunnyvale, USA),

equipped with Chromeleon 6.8 software. Nine carbohydrate fractions (fucose, rhamnose,

arabinose, galactose, glucose, xylose/mannose, fructose/sucrose, ribose and lactose) were

separated isocratically on a CarboPac PA20 column (3×150 mm), after passing through a

590 CarboPac PA20 guard column (3x30 mm), following previously described methods^{8, 50}.

591 Fructose/sucrose and xylose/mannose were reported together, due to the carbohydrates co-

- ⁵⁹² eluting⁸. Fourteen different free amino acids (lysine, alanine, threonine, glycine, valine,
- serine, proline, isoleucine, leucine, methionine, phenylalanine, cysteine, aspartic acid,
- 594 glutamic acid and tyrosine) were separated on an AminoPac PA10 column (2×250 mm), after

595	passing through an AminoPac PA10 guard column (2x50 mm) ⁸ . Five VFA (acetate,
596	propionate, formate, butyrate and oxalate) were separated isocratically on an IonPac AS11-
597	HC capillary IC column (2×250 mm), after passing through an IonPac AG11-HC guard
598	column (2x50 mm). Precision was \leq 10% and accuracy was \leq ±9% for all analytes,
599	determined as per Lawson <i>et al.</i> $(2014)^8$.
600	
601	Fluorescence Spectroscopy
602	
603	Synchronous fluorescence spectroscopy was performed on a HORIBA Jobin Yvon
604	Fluorolog-3 spectrofluorometer to qualitatively assess the proportions of proteinaceous-like
605	and humic-like fluorophores in the fulvic acid fraction of DOC ^{8, 37, 38} . The parameters for
606	scanning and post-scanning corrections (Ramen and Rayleigh scattering, and inner-filter
607	effects) were based on previously described protocols, where λ emission = λ excitation + 18
608	nm ^{8, 44, 45} . The fluorescence spectra for all of the samples were normalised to the
609	fluorescence peak spectral maximum (i.e. the maximum fluorescent intensity in all of the
610	samples), by dividing the intensity of the emissions measured by the maximum emission
611	intensity that was measured in the entire dataset, following previously described methods ^{8, 44,}
612	45.
613	
614	Data availability
615	
616	The authors declare that the data supporting the findings of this study are available within the
617	article and its supplementary information files. Further datasets generated during and/or
618	analysed during the current study are available from the corresponding author on reasonable

619 request.

621 Methods References

622		
623	48.	Musilova M, Tranter M, Bennett SA, Wadham J, Anesio AM. Stable microbial
624		community composition on the Greenland Ice Sheet. Front Microbiol 2015, 6: 193.
625		
626	49.	Telling J, Anesio AM, Hawkings J, Tranter M, Wadham JL, Hodson AJ, et al.
627		Measuring rates of gross photosynthesis and net community production in cryoconite
628		holes: a comparison of field methods. Ann Glaciol 2010, 51: 153-162.
629		
630	50.	Stibal M, Lawson EC, Lis GP, Mak KM, Wadham JL, Anesio AM. Organic matter
631		content and quality in supraglacial debris across the ablation zone of the Greenland
632		ice sheet. Ann Glaciol 2010, 51: 1-8.

Date, 2012

Excitation (nm)

Date, 2012

Date, 2012

