95 research outputs found

    New cytotoxic benzo(b)thiophenilsulfonamide 1,1-dioxide derivatives inhibit a NADH oxidase located in plasma membranes of tumour cells

    Get PDF
    A series of benzo(b)thiophenesulfonamide 1,1-dioxide derivatives (BTS) have been designed and synthesized as candidate antineoplastic drugs. Several of these compounds have shown in vitro cytotoxic activity on leukaemic CCRF-CEM cells. The cytotoxic BTS, but not the inactive ones, were able to inhibit a tumour cell-specific NADH oxidase activity present in the membrane of CCRF-CEM cells. © 2001 Cancer Research Campaig

    Pharmacokinetics of phenoxodiol, a novel isoflavone, following intravenous administration to patients with advanced cancer

    Get PDF
    Background: Phenoxodiol is a novel isoflavone currently being studied in clinical trials for the treatment of cancer. This study reports the pharmacokinetics of phenoxodiol in patients with cancer.Methods: The pharmacokinetics of phenoxodiol was studied following a single intravenous (iv) bolus dose and during a continuous intravenous infusion. Three men with prostate cancer and 3 women with breast cancer received IV bolus phenoxodiol (5 mg/kg) and plasma was sampled for free and total phenoxodiol levels. On a separate occasion 5 of the same patients received a continuous intravenous infusion of phenoxodiol (2 mg/kg/h) and plasma was again sampled for free and total phenoxodiol levels. Phenoxodiol was measured using gradient HPLC with ultraviolet detection.Results: Following bolus injection, free and total phenoxodiol appeared to follow first order pharmacokinetics. The elimination half-lives for free and total phenoxodiol were 0.67 ± 0.53 h and 3.19 ± 1.93 h, respectively, while the total plasma clearance rates were 2.48 ± 2.33 L/h and 0.15 ± 0.08 L/h, respectively. The respective apparent volumes of distribution were 1.55 ± 0.69 L/kg and 0.64 ± 0.51 L/kg. During continuous intravenous infusion, free phenoxodiol accumulated rapidly to reach a mean concentration at steady state of 0.79 ± 0.14 μg/ml after 0.87 ± 0.18 h. The apparent accumulation half-life of free phenoxodiol was 0.17 ± 0.04 h while the plasma clearance during continuous infusion was 1.29 ± 0.23 L/h.Conclusions: Phenoxodiol has a short plasma half-life, particularly in the free form, leading to a rapid attainment of steady state levels during continuous intravenous infusion.Trial registration: Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12610000334000

    The effects of phenoxodiol on the cell cycle of prostate cancer cell lines

    Get PDF
    Background: Prostate cancer is associated with a poor survival rate. The ability of cancer cells to evade apoptosis and exhibit limitless replication potential allows for progression of cancer from a benign to a metastatic phenotype. The aim of this study was to investigate in vitro the effect of the isoflavone phenoxodiol on the expression of cell cycle genes. Methods: Three prostate cancer cell lines-LNCaP, DU145, and PC3 were cultured in vitro, and then treated with phenoxodiol (10 μM and 30 μM) for 24 and 48 h. The expression of cell cycle genes p21WAF1, c-Myc, Cyclin-D1, and Ki-67 was investigated by Real Time PCR. Results: Here we report that phenoxodiol induces cell cycle arrest in the G1/S phase of the cell cycle, with the resultant arrest due to the upregulation of p21WAF1 in all the cell lines in response to treatment, indicating that activation of p21WAF1 and subsequent cell arrest was occurring via a p53 independent manner, with induction of cytotoxicity independent of caspase activation. We found that c-Myc and Cyclin-D1 expression was not consistently altered across all cell lines but Ki-67 signalling expression was decreased in line with the cell cycle arrest. Conclusions: Phenoxodiol demonstrates an ability in prostate cancer cells to induce significant cytotoxicity in cells by interacting with p21WAF1 and inducing cell cycle arrest irrespective of p53 status or caspase pathway interactions. These data indicate that phenoxodiol would be effective as a potential future treatment modality for both hormone sensitive and hormone refractory prostate cancer

    Spermatogonial stem cell sensitivity to capsaicin: An in vitro study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conflicting reports have been published on the sensitivity of spermatogenesis to capsaicin (CAP), the pungent ingredient of hot chili peppers. Here, the effect of CAP on germ cell survival was investigated by using two testis germ cell lines as a model. As CAP is a potent agonist of the transient receptor potential vanilloid receptor 1 (TRPV1) and no information was available of its expression in germ cells, we also studied the presence of TRPV1 in the cultured cells and in germ cells in situ.</p> <p>Methods</p> <p>The rat spermatogonial stem cell lines Gc-5spg and Gc-6spg were used to study the effects of different concentrations of CAP during 24 and 48 h. The response to CAP was first monitored by phase-contrast microscopy. As germ cells appear to undergo apoptosis in the presence of CAP, the activation of caspase 3 was studied using an anti activated caspase 3 antibody or by quantifying the amount of cells with DNA fragmentation using flow cytometry. Immunolocalization was done with an anti-TRPV1 antibody either with the use of confocal microscopy to follow live cell labeling (germ cells) or on Bouin fixed paraffin embedded testicular tissues. The expression of TRPV1 by the cell lines and germ cells was confirmed by Western blots.</p> <p>Results</p> <p>Initial morphological observations indicated that CAP at concentrations ranging from 150 uM to 250 uM and after 24 and 48 h of exposure, had deleterious apoptotic-like effects on both cell lines: A large population of the CAP treated cell cultures showed signs of DNA fragmentation and caspase 3 activation. Quantification of the effect demonstrated a significant effect of CAP with doses of 150 uM in the Gc-5spg cell line and 200 uM in the Gc-6spg cell line, after 24 h of exposure. The effect was dose and time dependent in both cell lines. TRPV1, the receptor for CAP, was found to be expressed by the spermatogonial stem cells in vitro and also by premeiotic germ cells in situ.</p> <p>Conclusion</p> <p>CAP adversely affects spermatogonial survival in vitro by inducing apoptosis to those cells and TRPV-1, a CAP receptor, may be involved in this effect as this receptor is expressed by mitotic germ cells.</p

    Innate immunity in ocular Chlamydia trachomatis infection: contribution of IL8 and CSF2 gene variants to risk of trachomatous scarring in Gambians

    Get PDF
    BACKGROUND: Trachoma, a chronic keratoconjunctivitis caused by Chlamydia trachomatis, is the world's commonest infectious cause of blindness. Blindness is due to progressive scarring of the conjunctiva (trachomatous scarring) leading to in-turning of eyelashes (trichiasis) and corneal opacification. We evaluated the contribution of genetic variation across the chemokine and cytokine clusters in chromosomes 4q and 5q31 respectively to risk of scarring trachoma and trichiasis in a large case-control association study in a Gambian population. METHODS: Linkage disequilibrium (LD) mapping was used to investigate risk effects across the 4q and 5q31 cytokine clusters in relation to the risk of scarring sequelae of ocular Ct infection. Disease association and epistatic effects were assessed in a population based study of 651 case-control pairs by conditional logistic regression (CLR) analyses. RESULTS: LD mapping suggested that genetic effects on risk within these regions mapped to the pro-inflammatory innate immune genes interleukin 8 (IL8) and granulocyte-macrophage colony stimulatory factor (CSF2) loci. The IL8-251 rare allele (IL8-251 TT) was associated with protection from scarring trachoma (OR = 0.29 p = 0.027). The intronic CSF2_27348 A allele in chromosome 5q31 was associated with dose dependent protection from trichiasis, with each copy of the allele reducing risk by 37% (p = 0.005). There was evidence of epistasis, with effects at IL8 and CSF2 loci interacting with those previously reported at the MMP9 locus, a gene acting downstream to IL8 and CSF2 in the inflammatory cascade. CONCLUSION: innate immune response SNP-haplotypes are linked to ocular Ct sequelae. This work illustrates the first example of epistatic effects of two genes on trachoma

    A Bi-fluorescence complementation system to detect associations between the Endoplasmic reticulum and mitochondria

    Get PDF
    Abstract Close contacts between the endoplasmic reticulum membrane and the mitochondrial outer membrane facilitate efficient transfer of lipids between the organelles and coordinate Ca2+ signalling and stress responses. Changes to this coupling is associated with a number of metabolic disorders and neurodegenerative diseases including Alzheimer’s, Parkinson’s and motor neuron disease. The distance between the two membranes at regions of close apposition is below the resolution of conventional light microscopy, which makes analysis of these interactions challenging. Here we describe a new bifluorescence complementation (BiFC) method that labels a subset of ER-mitochondrial associations in fixed and living cells. The total number of ER-mitochondria associations detected by this approach increases in response to tunicamycin-induced ER stress, serum deprivation or reduced levels of mitofusin 2 (MFN2). This method will facilitate the analysis of dynamic interactions between the ER and mitochondrial membranes

    Calcium-Calmodulin Requirements of Phosphatidyl Inositol Turnover Stimulated by Auxin

    No full text
    • …
    corecore