5,373 research outputs found

    Surface doping in T6/ PDI-8CN2 Heterostructures investigated by transport and photoemission measurements

    Full text link
    In this paper, we discuss the surface doping in sexithiophene (T6) organic field-effect transistors by PDI-8CN2. We show that an accumulation heterojunction is formed at the interface between the organic semiconductors and that the consequent band bending in T6 caused by PDI-8CN2 deposition can be addressed as the cause of the surface doping in T6 transistors. Several evidences of this phenomenon have been furnished both by electrical transport and photoemission measurements, namely the increase in the conductivity, the shift of the threshold voltage and the shift of the T6 HOMO peak towards higher binding energies.Comment: 5 pages, 5 figure

    Retropharyngeal Lipoma Causing Sleep Apnea Syndrome

    Get PDF

    Prospects for detecting Gamma-Ray Bursts with the Cherenkov Telescope Array

    Get PDF
    The Large Area Telescope (LAT) on the Fermi gamma-ray satellite telescope observes Gamma-Ray Bursts (GRBs) at energies above 100 MeV. Thanks to a new detection algorithm and a new event reconstruction, it is expected to publish a catalogue with more than 100 GRBs. This work aims at revising the prospects for GRB alerts with the Cherenkov Telescope Array (CTA) based on the new LAT results. We start by considering the simulation of the observations with the full CTA of two extremely bright events, the long GRB 130427A and the short GRB 090510; then we investigate how these GRBs would be observed by different subsamples of the array pointing to different directions, adopting the \u201ccoupled divergent\u201d mode

    Single-Crystal Organic Charge-Transfer Interfaces probed using Schottky-Gated Heterostructures

    Full text link
    Organic semiconductors based on small conjugated molecules generally behave as insulators when undoped, but the hetero-interfaces of two such materials can show electrical conductivity as large as in a metal. Although charge transfer is commonly invoked to explain the phenomenon, the details of the process and the nature of the interfacial charge carriers remain largely unexplored. Here we use Schottky-gated heterostructures to probe the conducting layer at the interface between rubrene and PDIF-CN2 single crystals. Gate-modulated conductivity measurements demonstrate that interfacial transport is due to electrons, whose mobility exhibits band-like behavior from room temperature to ~ 150 K, and remains as high as ~ 1 cm2V-1s-1 at 30 K for the best devices. The electron density decreases linearly with decreasing temperature, an observation that can be explained quantitatively based on the heterostructure band diagram. These results elucidate the electronic structure of rubrene-PDIF-CN2 interfaces and show the potential of Schottky-gated organic heterostructures for the investigation of transport in molecular semiconductors.Comment: 37 pages, 9 Figures (including supplementary information

    Study of the evolution in space and time of water diffusion in a leaf through a sub-terahertz portable imaging system

    Get PDF
    Among the non-destructive techniques capable of obtaining information on biological systems even in vivo, terahertz-based techniques are emerging due to their specificity to the water content, which can represent an important indicator of the presence of microorganisms and, in general, of the health status, particularly in plants. Nevertheless, the analysis of the extracted data (especially for images) and the exploitation of the potential of the technique for the study of the complex phenomena that occur in living tissues are still almost unexplored fields. In this work, the hydration status of leaves both in vivo and ex vivo was monitored continuously and nondestructively by acquiring videos in the sub-terahertz range through a portable imaging system. A model for describing the water flow in space and time in the midvein of a leaf is obtained which is suitable for the analysis of the data extracted from the portable sub-terahertz imaging system. These results show that terahertz-based technology can be used to study biological phenomena even in vivo; moreover, they pave the way for the introduction of a general method for the analysis of terahertz data based on surface fits in space and in time as well

    Fixture-abutment connection surface and micro-gap measurements by 3D micro-tomographic technique analysis

    Get PDF
    X-ray micro-tomography (micro-CT) is a miniaturized form of conventional computed axial tomography (CAT) able to investigate small radio-opaque objects at a-few-microns high resolution, in a non-destructive, non-invasive, and tri-dimensional way. Compared to traditional optical and electron microscopy techniques, which provide two-dimensional images, this innovative investigation technology enables a sample tri-dimensional analysis without cutting, coating or exposing the object to any particular chemical treatment. X-ray micro-tomography matches ideal 3D microscopy features: the possibility of investigating an object in natural conditions and without any preparation or alteration; non-invasive, non-destructive, and sufficiently magnified 3D reconstruction; reliable measurement of numeric data of the internal structure (morphology, structure and ultra-structure). Hence, this technique has multi-fold applications in a wide range of fields, not only in medical and odontostomatologic areas, but also in biomedical engineering, materials science, biology, electronics, geology, archaeology, oil industry, and semi-conductors industry. This study shows possible applications of micro-CT in dental implantology to analyze 3D micro-features of dental implant to abutment interface. Indeed, implant-abutment misfit is known to increase mechanical stress on connection structures and surrounding bone tissue. This condition may cause not only screw preload loss or screw fracture, but also biological issues in peri-implant tissues

    Vestibulo-Ocular Reflex Modification after Virtual Environment Exposure

    Get PDF
    Immersion in an illusory world is possible by means of virtual reality (VR), where environmental perception is modi bff c1c ed by artificial sensorial stimulation. The application of VR for the assessment and rehabilitation of pathologies affecting the vestibular system, in terms of both diagnosis and care, could represent an interesting new line of research. Our perception of reality is in fact based on static and dynamic spatial information perceived by our senses. During head movements in a virtual environment the images on the display and the labyrinthine information relative to the head angular accelerations differ and therefore a visuo-vestibular conflict is present. It is known that mismatches between visual and labyrinthine information may modify the vestibulo-oculomotor reflex (VOR) gain. We studied the post-immersion modifications in 20 healthy subjects (mean age 25 years) exposed to a virtual environment for 20 min by wearing a head-mounted display. VOR gain and phase were measured by means of harmonic sinusoidal stimulation in the dark before, at the end of and 30 min after VR exposure. A VOR gain reduction was observed in all subjects at the end of VR exposure which disappeared after 30 min. Our data show that exposure to a virtual environment can induce a temporary modi bff c1c cation of the VOR gain. This bff c1c nding can be employed to enable an artificial, instrumental modification of the VOR gain and therefore opens up new perspectives in the assessment and rehabilitation of vestibular diseases

    Evaluation of municipal waste incineration impact on environmental noise

    Get PDF
    The EU Directive 2002/49/EC or Environmental Noise Directive (END) aims to define a common approach intended to avoid, prevent or reduce the harmful effects, including annoyance, due to exposure to environmental noise. Under this Directive, member states are obliged to produce the noise maps of the major roads, railways airports, large agglomerations and industrial activity sites. The first maps had to be produced for the main agglomerations by July 2007 and the first action plans should be activated no lather than July 2008. In this work we consider the industrial noise produced by municipal waste incineration; the study was developed to provide data of the sound power level along the facades buildings and contours of this site that can be used to produce strategic noise maps. To characterize the impact of the waste incineration plant, measurements of the noise emissions were performed in situ. The distribution of sound power and sound input levels have been calculated by SoundPLAN\uae computer model. The results of this work can provide a re-applicable method for the production of noise levels due to industrial noise sources. The results are suitable to be included in noise maps for agglomerations, in line with the END expectatio
    corecore