1,207 research outputs found

    Extreme Energy Cosmic Rays (EECR) Observation Capabilities of an "Airwatch from Space'' Mission

    Get PDF
    The longitudinal development and other characteristics of the EECR induced atmospheric showers can be studied from space by detecting the fluorescence light induced in the atmospheric nitrogen. According to the Airwatch concept a single fast detector can be used for measuring both intensity and time development of the streak of fluorescence light produced by the atmospheric shower induced by an EECR. In the present communication the detection capabilities for the EECR observation from space are discussed.Comment: 3 pages (LaTeX). To appear in the Proceedings of TAUP'9

    Orexin-A/Hypocretin-1 Controls the VTA-NAc Mesolimbic Pathway via Endocannabinoid-Mediated Disinhibition of Dopaminergic Neurons in Obese Mice

    Get PDF
    Disinhibition of orexin-A/hypocretin-1 (OX-A) release occurs to several output areas of the lateral hypothalamus (LH) in the brain of leptin knockout obese ob/ob mice. In this study, we have investigated whether a similar increase of OX-A release occurs to the ventral tegmental area (VTA), an orexinergic LH output area with functional effects on dopaminergic signaling at the mesolimbic circuit. By confocal and correlative light and electron microscopy (CLEM) morphological studies coupled to molecular, biochemical, and pharmacological approaches, we investigated OX-A-mediated dopaminergic signaling at the LH-VTA-nucleus accumbens (NAc) pathway in obese ob/ob mice compared to wild-type (wt) lean littermates. We found an elevation of OX-A trafficking and release to the VTA of ob/ob mice and consequent orexin receptor-1 (OX1R)-mediated over-activation of dopaminergic (DA) neurons via phospholipase C (PLC)/diacylglycerol lipase (DAGL-α)-induced biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). In fact, by retrograde signaling to cannabinoid receptor type 1 (CB1R) at inhibitory inputs to DA neurons, 2-AG inhibited GABA release thus inducing an increase in DA concentration in the VTA and NAc of ob/ob mice. This effect was prevented by the OX1R antagonist SB-334867 (30 mg/Kg, i.p.), or the CB1R antagonist AM251 (10 mg/Kg, i.p.) and mimicked by OX-A injection (40 μg/Kg, i.p.) in wt lean mice. Enhanced DA signaling to the NAc in ob/ob mice, or in OX-A-injected wt mice, was accompanied by β-arrestin2-mediated desensitization of dopamine D2 receptor (D2R) in a manner prevented by SB-334867 or the D2R antagonist L741 (1.5 mg/Kg, i.p.). These results further support the role of OX-A signaling in the control of neuroadaptive responses, such as compulsive reward-seeking behavior or binge-like consumption of high palatable food, and suggest that aberrant OX-A trafficking to the DA neurons in the VTA of ob/ob mice influences the D2R response at NAc, a main target area of the mesolimbic pathway, via 2-AG/CB1-mediated retrograde signaling

    The Cosmic-Ray Proton and Helium Spectra measured with the CAPRICE98 balloon experiment

    Get PDF
    A new measurement of the primary cosmic-ray proton and helium fluxes from 3 to 350 GeV was carried out by the balloon-borne CAPRICE experiment in 1998. This experimental setup combines different detector techniques and has excellent particle discrimination capabilities allowing clear particle identification. Our experiment has the capability to determine accurately detector selection efficiencies and systematic errors associated with them. Furthermore, it can check for the first time the energy determined by the magnet spectrometer by using the Cherenkov angle measured by the RICH detector well above 20 GeV/n. The analysis of the primary proton and helium components is described here and the results are compared with other recent measurements using other magnet spectrometers. The observed energy spectra at the top of the atmosphere can be represented by (1.27+-0.09)x10^4 E^(-2.75+-0.02) particles (m^2 GeV sr s)^-1, where E is the kinetic energy, for protons between 20 and 350 GeV and (4.8+-0.8)x10^2 E^(-2.67+-0.06) particles (m^2 GeV nucleon^-1 sr s)^-1, where E is the kinetic energy per nucleon, for helium nuclei between 15 and 150 GeV nucleon^-1.Comment: To be published on Astroparticle Physics (44 pages, 13 figures, 5 tables

    Examination of direct-photon and pion production in proton-nucleon collisions

    Full text link
    We present a study of inclusive direct-photon and pion production in hadronic interactions, focusing on a comparison of the ratio of gamma/pi0 yields with expectations from next-to-leading order perturbative QCD (NLO pQCD). We also examine the impact of a phenomenological model involving k_T smearing (which approximates effects of additional soft-gluon emission) on absolute predictions for photon and pion production and their ratio.Comment: 20 pages, 12 figures. Minor changes in wording and in figure

    Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude

    Get PDF
    We report here the measurements of the energy spectra of atmospheric muons and of the cosmic ray primary proton and helium nuclei in a single experiment. These were carried out using the MASS superconducting spectrometer in a balloon flight experiment in 1991. The relevance of these results to the atmospheric neutrino anomaly is emphasized. In particular, this approach allows uncertainties caused by the level of solar modulation, the geomagnetic cut-off of the primaries and possible experimental systematics to be decoupled in the comparison of calculated fluxes of muons to measured muon fluxes. The muon observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886 g/cmsquared, respectively. The proton and helium primary measurements cover the rigidity range from 3 to 100 GV, in which both the solar modulation and the geomagnetic cut-off affect the energy spectra at low energies.Comment: 31 pages, including 17 figures, simplified apparatus figure, to appear in Phys. Rev.

    Launch of the Space experiment PAMELA

    Full text link
    PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antimatter with a precision of the order of 10^-8). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15, 2006 in a 350*600 km orbit with an inclination of 70 degrees. The detector is composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, Time-of-Flight and rigidity information. Lepton/hadron identification is performed by a Silicon-Tungsten calorimeter and a Neutron detector placed at the bottom of the device. An Anticounter system is used offline to reject false triggers coming from the satellite. In self-trigger mode the Calorimeter, the neutron detector and a shower tail catcher are capable of an independent measure of the lepton component up to 2 TeV. In this work we describe the experiment, its scientific objectives and the performance in the first months after launch.Comment: Accepted for publication on Advances in Space Researc

    Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus

    Get PDF
    A new measurement of the momentum spectra of both positive and negative muons as function of atmospheric depth was made by the balloon-borne experiment CAPRICE94. The data were collected during ground runs in Lynn Lake on the 19-20th of July 1994 and during the balloon flight on the 8-9th of August 1994. We present results that cover the momentum intervals 0.3-40 GeV/c for negative muons and 0.3-2 GeV/c for positive muons, for atmospheric depths from 3.3 to 1000 g/cm**2, respectively. Good agreement is found with previous measurements for high momenta, while at momenta below 1 GeV/c we find latitude dependent geomagnetic effects. These measurements are important cross-checks for the simulations carried out to calculate the atmospheric neutrino fluxes and to understand the observed atmospheric neutrino anomaly.Comment: 28 pages, 13 Postscript figures, uses revtex.sty, to appear in Phys. Rev.
    • …
    corecore