99 research outputs found

    Linkage Group Selection: Towards Identifying Genes Controlling Strain Specific Protective Immunity in Malaria

    Get PDF
    Protective immunity against blood infections of malaria is partly specific to the genotype, or strain, of the parasites. The target antigens of Strain Specific Protective Immunity are expected, therefore, to be antigenically and genetically distinct in different lines of parasite. Here we describe the use of a genetic approach, Linkage Group Selection, to locate the target(s) of Strain Specific Protective Immunity in the rodent malaria parasite Plasmodium chabaudi chabaudi. In a previous such analysis using the progeny of a genetic cross between P. c. chabaudi lines AS-pyr1 and CB, a location on P. c. chabaudi chromosome 8 containing the gene for merozoite surface protein-1, a known candidate antigen for Strain Specific Protective Immunity, was strongly selected. P. c. chabaudi apical membrane antigen-1, another candidate for Strain Specific Protective Immunity, could not have been evaluated in this cross as AS-pyr1 and CB are identical within the cell surface domain of this protein. Here we use Linkage Group Selection analysis of Strain Specific Protective Immunity in a cross between P. c. chabaudi lines CB-pyr10 and AJ, in which merozoite surface protein-1 and apical membrane antigen-1 are both genetically distinct. In this analysis strain specific immune selection acted strongly on the region of P. c. chabaudi chromosome 8 encoding merozoite surface protein-1 and, less strongly, on the P. c. chabaudi chromosome 9 region encoding apical membrane antigen-1. The evidence from these two independent studies indicates that Strain Specific Protective Immunity in P. c. chabaudi in mice is mainly determined by a narrow region of the P. c. chabaudi genome containing the gene for the P. c. chabaudi merozoite surface protein-1 protein. Other regions, including that containing the gene for P. c. chabaudi apical membrane antigen-1, may be more weakly associated with Strain Specific Protective Immunity in these parasites

    The phase diagram of Yang-Mills theory with a compact extra dimension

    Get PDF
    We present a non-perturbative study of the phase diagram of SU(2) Yang-Mills theory in a five-dimensional spacetime with a compact extra dimension. The non-renormalizable theory is regularized on an anisotropic lattice and investigated through numerical simulations in a regime characterized by a hierarchy between the scale of low-energy physics, the inverse compactification radius, and the cutoff scale. We map out the structure of the phase diagram and the pattern of lines corresponding to fixed values of the ratio between the mass of the fifth component of the gauge field and the non-perturbative mass gap of the four-dimensional modes. We discuss different limits of the model, and comment on the implications of our findings.Comment: 17 pages, 9 figure

    A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila

    Get PDF
    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens

    Is Task-Irrelevant Learning Really Task-Irrelevant?

    Get PDF
    In the present study we address the question of whether the learning of task-irrelevant stimuli found in the paradigm of task-irrelevant learning (TIPL) [1]–[9] is truly task irrelevant. To test the hypothesis that associations that are beneficial to task-performance may develop between the task-relevant and task-irrelevant stimuli, or the task-responses and the task-irrelevant stimuli, we designed a new procedure in which correlations between the presentation of task-irrelevant motion stimuli and the identity of task-targets or task-responses were manipulated. We found no evidence for associations developing between the learned (task-irrelevant) motion stimuli and the targets or responses to the letter identification task used during training. Furthermore, the conditions that had the greatest correlations between stimulus and response showed the least amount of TIPL. On the other hand, TIPL was found in conditions of greatest response uncertainty and with the greatest processing requirements for the task-relevant stimuli. This is in line with our previously published model that suggests that task-irrelevant stimuli benefit from the spill-over of learning signals that are released due to processing of task-relevant stimuli

    Is Task-Irrelevant Learning Really Task-Irrelevant?

    Get PDF
    In the present study we address the question of whether the learning of task-irrelevant stimuli found in the paradigm of task-irrelevant learning (TIPL) [1]–[9] is truly task irrelevant. To test the hypothesis that associations that are beneficial to task-performance may develop between the task-relevant and task-irrelevant stimuli, or the task-responses and the task-irrelevant stimuli, we designed a new procedure in which correlations between the presentation of task-irrelevant motion stimuli and the identity of task-targets or task-responses were manipulated. We found no evidence for associations developing between the learned (task-irrelevant) motion stimuli and the targets or responses to the letter identification task used during training. Furthermore, the conditions that had the greatest correlations between stimulus and response showed the least amount of TIPL. On the other hand, TIPL was found in conditions of greatest response uncertainty and with the greatest processing requirements for the task-relevant stimuli. This is in line with our previously published model that suggests that task-irrelevant stimuli benefit from the spill-over of learning signals that are released due to processing of task-relevant stimuli

    Stimulus Dependence of Barrel Cortex Directional Selectivity

    Get PDF
    Neurons throughout the rat vibrissa somatosensory pathway are sensitive to the angular direction of whisker movement. Could this sensitivity help rats discriminate stimuli? Here we use a simple computational model of cortical neurons to analyze the robustness of directional selectivity. In the model, directional preference emerges from tuning of synaptic conductance amplitude and latency, as in recent experimental findings. We find that directional selectivity during stimulation with random deflection sequences is strongly dependent on the mean deflection frequency: Selectivity is weakened at high frequencies even when each individual deflection evokes strong directional tuning. This variability of directional selectivity is due to generic properties of synaptic integration by the neuronal membrane, and is therefore likely to hold under very general physiological conditions. Our results suggest that directional selectivity depends on stimulus context. It may participate in tasks involving brief whisker contact, such as detection of object position, but is likely to be weakened in tasks involving sustained whisker exploration (e.g., texture discrimination)

    Long-term modification of cortical synapses improves sensory perception

    Get PDF
    Synapses and receptive fields of the cerebral cortex are plastic. However, changes to specific inputs must be coordinated within neural networks to ensure that excitability and feature selectivity are appropriately configured for perception of the sensory environment. Long-lasting enhancements and decrements to rat primary auditory cortical excitatory synaptic strength were induced by pairing acoustic stimuli with activation of the nucleus basalis neuromodulatory system. Here we report that these synaptic modifications were approximately balanced across individual receptive fields, conserving mean excitation while reducing overall response variability. Decreased response variability should increase detection and recognition of near-threshold or previously imperceptible stimuli, as we found in behaving animals. Thus, modification of cortical inputs leads to wide-scale synaptic changes, which are related to improved sensory perception and enhanced behavioral performance

    The Morphology of the Rat Vibrissal Array: A Model for Quantifying Spatiotemporal Patterns of Whisker-Object Contact

    Get PDF
    In all sensory modalities, the data acquired by the nervous system is shaped by the biomechanics, material properties, and the morphology of the peripheral sensory organs. The rat vibrissal (whisker) system is one of the premier models in neuroscience to study the relationship between physical embodiment of the sensor array and the neural circuits underlying perception. To date, however, the three-dimensional morphology of the vibrissal array has not been characterized. Quantifying array morphology is important because it directly constrains the mechanosensory inputs that will be generated during behavior. These inputs in turn shape all subsequent neural processing in the vibrissal-trigeminal system, from the trigeminal ganglion to primary somatosensory (“barrel”) cortex. Here we develop a set of equations for the morphology of the vibrissal array that accurately describes the location of every point on every whisker to within ±5% of the whisker length. Given only a whisker's identity (row and column location within the array), the equations establish the whisker's two-dimensional (2D) shape as well as three-dimensional (3D) position and orientation. The equations were developed via parameterization of 2D and 3D scans of six rat vibrissal arrays, and the parameters were specifically chosen to be consistent with those commonly measured in behavioral studies. The final morphological model was used to simulate the contact patterns that would be generated as a rat uses its whiskers to tactually explore objects with varying curvatures. The simulations demonstrate that altering the morphology of the array changes the relationship between the sensory signals acquired and the curvature of the object. The morphology of the vibrissal array thus directly constrains the nature of the neural computations that can be associated with extraction of a particular object feature. These results illustrate the key role that the physical embodiment of the sensor array plays in the sensing process

    Psychometric Curve and Behavioral Strategies for Whisker-Based Texture Discrimination in Rats

    Get PDF
    The rodent whisker system is a major model for understanding neural mechanisms for tactile sensation of surface texture (roughness). Rats discriminate surface texture using the whiskers, and several theories exist for how texture information is physically sensed by the long, moveable macrovibrissae and encoded in spiking of neurons in somatosensory cortex. However, evaluating these theories requires a psychometric curve for texture discrimination, which is lacking. Here we trained rats to discriminate rough vs. fine sandpapers and grooved vs. smooth surfaces. Rats intermixed trials at macrovibrissa contact distance (nose >2 mm from surface) with trials at shorter distance (nose <2 mm from surface). Macrovibrissae were required for distant contact trials, while microvibrissae and non-whisker tactile cues were used for short distance trials. A psychometric curve was measured for macrovibrissa-based sandpaper texture discrimination. Rats discriminated rough P150 from smoother P180, P280, and P400 sandpaper (100, 82, 52, and 35 µm mean grit size, respectively). Use of olfactory, visual, and auditory cues was ruled out. This is the highest reported resolution for rodent texture discrimination, and constrains models of neural coding of texture information
    corecore