323 research outputs found

    Fatty acid metabolism and T cells in multiple sclerosis.

    Get PDF
    Cellular metabolic remodeling is intrinsically linked to the development, activation, differentiation, function, and survival of T cells. T cells transition from a catabolic, naïve state to an anabolic effector state upon T cell activation. Subsequently, specialization of T cells into T helper (Th) subsets, including regulatory T cells (Treg), requires fine-tuning of metabolic programs that better support and optimize T cell functions for that particular environment. Increasingly, studies have shown that changes in nutrient availability at both the cellular and organismal level during disease states can alter T cell function, highlighting the importance of better characterizing metabolic-immune axes in both physiological and disease settings. In support of these data, a growing body of evidence is emerging that shows specific lipid species are capable of altering the inflammatory functional phenotypes of T cells. In this review we summarize the metabolic programs shown to support naïve and effector T cells, and those driving Th subsets. We then discuss changes to lipid profiles in patients with multiple sclerosis, and focus on how the presence of specific lipid species can alter cellular metabolism and function of T cells

    Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data

    Get PDF
    Background: Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed. Methods: We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool. Results: In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/ signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant difference (F = 2.75, P = 0.04) was detected for age of disease onset between the affected misclassified as controls (mean = 36 years) and the other three groups (high, 33.5 years; medium, 33.4 years; low, 33.1 years). Conclusions: The results are consistent with the polygenic model of inheritance. The cumulative genetic risk established using currently available genome-wide association data provides important insights into disease heterogeneity and completeness of current knowledge in MS genetics

    Variants of ST8SIA1 Are Associated with Risk of Developing Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system of unknown etiology with both genetic and environmental factors playing a role in susceptibility. To date, the HLA DR15/DQ6 haplotype within the major histocompatibility complex on chromosome 6p, is the strongest genetic risk factor associated with MS susceptibility. Additional alleles of IL7 and IL2 have been identified as risk factors for MS with small effect. Here we present two independent studies supporting an allelic association of MS with polymorphisms in the ST8SIA1 gene, located on chromosome 12p12 and encoding ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1. The initial association was made in a single three-generation family where a single-nucleotide polymorphism (SNP) rs4762896, was segregating together with HLA DR15/DQ6 in MS patients. A study of 274 family trios ( affected child and both unaffected parents) from Australia validated the association of ST8SIA1 in individuals with MS, showing transmission disequilibrium of the paternal alleles for three additional SNPs, namely rs704219, rs2041906, and rs1558793, with p = 0.001, p = 0.01 and p = 0.01 respectively. These findings implicate ST8SIA1 as a possible novel susceptibility gene for MS

    The genetic basis of multiple sclerosis: a model for MS susceptibility

    Get PDF
    <p>Abstact</p> <p>Background</p> <p>MS-pathogenesis is known to involve both multiple environmental events, and several independent genetic risk-factors.</p> <p>Methods</p> <p>A model of susceptibility is developed and a mathematical analysis undertaken to elucidate the nature of genetic susceptibility to MS and to understand the constraints that are placed on the genetic basis of MS, both by the known epidemiological facts of this disease and by the known frequency of the HLA DRB1*1501 allele in the general populations of northern Europe and North America.</p> <p>Results</p> <p>For the large majority of cases (possibly all), MS develops, in part, because an individual is genetically susceptible. Nevertheless, 2.2% or less of the general population is genetically susceptible. Moreover, from the model, the number of susceptibility-loci that need to be in a "susceptible allelic state" to produce MS-susceptibility is small (11-18), whereas the total number of such susceptibility-loci is large (50-200), and their "frequency of susceptibility" is low (i.e., ≤ 0.12). The optimal solution to the model equations (which occurs when 80% of the loci are recessive) predicts the epidemiological data quite closely.</p> <p>Conclusions</p> <p>The model suggests that combinations of only a small number of genetic loci in a "susceptible allelic state" produce MS-susceptibility. Nevertheless, genome-wide associations studies with hundreds of thousands of SNPs, are plagued by both false-positive and false-negative identifications and, consequently, emphasis has been rightly placed on the replicability of findings. Nevertheless, because genome-wide screens don't distinguish between true susceptibility-loci and disease-modifying-loci, and because only true susceptibility-loci are constrained by the model, unraveling the two will not be possible using this approach.</p> <p>The model also suggests that HLA DRB1 may not be as uniquely important for MS-susceptibility as currently believed. Thus, this allele is only one among a hundred or more loci involved in MS susceptibility. Even though the "frequency of susceptibility" at the HLA DRB1 locus is four-fold that of other loci, the penetrance of those susceptible genotypes that include this allele is no different from those that don't. Also, almost 50% of genetically-susceptible individuals, lack this allele. Moreover, of those who have it, only a small fraction (≤ 5.2%) are even susceptible to getting MS.</p

    Methylation of class II transactivator gene promoter IV is not associated with susceptibility to Multiple Sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple sclerosis (MS) is a complex trait in which alleles at or near the class II loci <it>HLA-DRB1 </it>and <it>HLA-DQB1 </it>contribute significantly to genetic risk. The MHC class II transactivator (<it>MHC2TA</it>) is the master controller of expression of class II genes, and methylation of the promoter of this gene has been previously been shown to alter its function. In this study we sought to assess whether or not methylation of the <it>MHC2TA </it>promoter pIV could contribute to MS disease aetiology.</p> <p>Methods</p> <p>In DNA from peripheral blood mononuclear cells from a sample of 50 monozygotic disease discordant MS twins the <it>MHC2TA </it>promoter IV was sequenced and analysed by methylation specific PCR.</p> <p>Results</p> <p>No methylation or sequence variation of the <it>MHC2TA </it>promoter pIV was found.</p> <p>Conclusion</p> <p>The results of this study cannot support the notion that methylation of the pIV promoter of <it>MHC2TA </it>contributes to MS disease risk, although tissue and timing specific epigenetic modifications cannot be ruled out.</p

    Absence of system xc⁻ on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis

    Get PDF
    Background: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System x(c)- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. Methods: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system x(c)-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT(-/-)) mice and irradiated mice reconstituted in xCT(-/-) bone marrow (BM), to their proper wild type (xCT(+/+)) controls. Results: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT(+/+) mice, xCT(-/-) mice were equally susceptible to EAE, whereas mice transplanted with xCT(-/-) BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. Conclusions: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system x(c)- on immune cells invading the CNS participates to EAE. Since a total loss of system x(c)- had no net beneficial effects, these results have important implications for targeting system x(c)- for treatment of MS

    Enhanced astrocyte responses are driven by a genetic risk allele associated with multiple sclerosis

    Get PDF
    Epigenetic annotation studies of genetic risk variants for multiple sclerosis (MS) implicate dysfunctional lymphocytes in MS susceptibility; however, the role of central nervous system (CNS) cells remains unclear. We investigated the effect of the risk variant, rs7665090G, located near NFKB1, on astrocytes. We demonstrated that chromatin is accessible at the risk locus, a prerequisite for its impact on astroglial function. The risk variant was associated with increased NF-κB signaling and target gene expression, driving lymphocyte recruitment, in cultured human astrocytes and astrocytes within MS lesions, and with increased lesional lymphocytic infiltrates and lesion sizes. Thus, our study establishes a link between genetic risk for MS (rs7665090G) and dysfunctional astrocyte responses associated with increased CNS access for peripheral immune cells. MS may therefore result from variant-driven dysregulation of the peripheral immune system and of the CNS, where perturbed CNS cell function aids in establishing local autoimmune inflammation

    An extension to a statistical approach for family based association studies provides insights into genetic risk factors for multiple sclerosis in the HLA-DRB1 gene

    Get PDF
    Background: Multiple sclerosis (MS) is a complex trait in which genes in the MHC class II region exert the single strongest effect on genetic susceptibility. The principal MHC class II haplotype that increases MS risk in individuals of Northern European descent are those that bear HLA-DRB1*15. However, several other HLA-DRB1 alleles have been positively and negatively associated with MS and each of the main allelotypes is composed of many sub-allelotypes with slightly different sequence composition. Given the role of this locus in antigen presentation it has been suggested that variations in the peptide binding site of the allele may underlie allelic variation in disease risk. Methods: In an investigation of 7,333 individuals from 1,352 MS families, we assessed the nucleotide sequence of HLA-DRB1 for any effects on disease susceptibility extending a recently published method of statistical analysis for family-based association studies to the particular challenges of hyper-variable genetic regions. Results: We found that amino acid 60 of the HLA-DRB1 peptide sequence, which had previously been postulated based on structural features, is unlikely to play a major role. Instead, empirical evidence based on sequence information suggests that MS susceptibility arises primarily from amino acid 13. Conclusion: Identifying a single amino acid as a major risk factor provides major practical implications for risk and for the exploration of mechanisms, although the mechanism of amino acid 13 in the HLA-DRB1 sequence's involvement in MS as well as the identity of additional variants on MHC haplotypes that influence risk need to be uncovered

    Predicting Peptide Binding Affinities to MHC Molecules Using a Modified Semi-Empirical Scoring Function

    Get PDF
    The Major Histocompatibility Complex (MHC) plays an important role in the human immune system. The MHC is involved in the antigen presentation system assisting T cells to identify foreign or pathogenic proteins. However, an MHC molecule binding a self-peptide may incorrectly trigger an immune response and cause an autoimmune disease, such as multiple sclerosis. Understanding the molecular mechanism of this process will greatly assist in determining the aetiology of various diseases and in the design of effective drugs. In the present study, we have used the Fresno semi-empirical scoring function and modify the approach to the prediction of peptide-MHC binding by using open-source and public domain software. We apply the method to HLA class II alleles DR15, DR1, and DR4, and the HLA class I allele HLA A2. Our analysis shows that using a large set of binding data and multiple crystal structures improves the predictive capability of the method. The performance of the method is also shown to be correlated to the structural similarity of the crystal structures used. We have exposed some of the obstacles faced by structure-based prediction methods and proposed possible solutions to those obstacles. It is envisaged that these obstacles need to be addressed before the performance of structure-based methods can be on par with the sequence-based methods
    corecore