45 research outputs found

    Spectral Dependence of Polarized Radiation due to Spatial Correlations

    Full text link
    We study the polarization of light emitted by spatially correlated sources. We show that in general polarization acquires nontrivial spectral dependence due to spatial correlations. The spectral dependence is found to be absent only for a special class of sources where the correlation length scales as the wavelength of light. We further study the cross correlations between two spatially distinct points that are generated due to propagation. It is found that such cross correlation leads to sufficiently strong spectral dependence of polarization which can be measured experimentally.Comment: 5 pages, 4 figure

    Individual addressing and state readout of trapped ions utilizing rf- micromotion

    Get PDF
    A new scheme for the individual addressing of ions in a trap is described that does not rely on light beams tightly focused onto only one ion. The scheme utilizes ion micromotion that may be induced in a linear trap by dc offset potentials. Thus coupling an individual ion to the globally applied light fields corresponds to a mere switching of voltages on a suitable set of compensation electrodes. The proposed scheme is especially suitable for miniaturized rf (Paul) traps with typical dimensions of about 20-40 microns.Comment: 3 pages, 5 figure

    Broadening of Spectral Lines due to Dynamic Multiple Scattering and the Tully-Fisher Relation

    Full text link
    The frequency shift of spectral lines is most often explained by the Doppler Effect in terms of relative motion, whereas the Doppler broadening of a particular line mainly depends on the absolute temperature. The Wolf effect on the other hand deals with the correlation induced spectral change and explains both the broadening and shift of the spectral lines. In this framework a relation between the width of the spectral line is related to the redshift z for the line and hence with the distance. For smaller values of z a relation similar to the Tully-Fisher relation can be obtained and for larger values of z a more general relation can be constructed. The derivation of this kind of relation based on dynamic multiple scattering theory may play a significant role in explaining the overall spectra of quasi stellar objects. We emphasize that this mechanism is not applicable for nearby galaxies, z≤1z \leq 1.Comment: 18 pages, 5 figures, revised Version has been submitted to Physical Review A. (2nd author's affiliation corrected

    Trapped-Ion Quantum Logic Utilizing Position-Dependent ac Stark Shifts

    Full text link
    We present a scheme utilizing position-dependent ac Stark shifts for doing quantum logic with trapped ions. By a proper choice of direction, position and size, as well as power and frequency of a far-off-resonant Gaussian laser beam, specific ac Stark shifts can be assigned to the individual ions, making them distinguishable in frequency-space. In contrast to previous all-optical based quantum gates with trapped ions, the present scheme enables individual addressing of single ions and selective addressing of any pair of ions for two-ion quantum gates, without using tightly focused laser beams. Furthermore, the decoherence rate due to off-resonant excitations can be made negligible as compared with other sources of decoherence.Comment: 5 pages, 4 figures. Submitted to Physical Review Letter

    The fully entangled fraction as an inclusive measure of entanglement applications

    Get PDF
    Characterizing entanglement in all but the simplest case of a two qubit pure state is a hard problem, even understanding the relevant experimental quantities that are related to entanglement is difficult. It may not be necessary, however, to quantify the entanglement of a state in order to quantify the quantum information processing significance of a state. It is known that the fully entangled fraction has a direct relationship to the fidelity of teleportation maximized under the actions of local unitary operations. In the case of two qubits we point out that the fully entangled fraction can also be related to the fidelities, maximized under the actions of local unitary operations, of other important quantum information tasks such as dense coding, entanglement swapping and quantum cryptography in such a way as to provide an inclusive measure of these entanglement applications. For two qubit systems the fully entangled fraction has a simple known closed-form expression and we establish lower and upper bounds of this quantity with the concurrence. This approach is readily extendable to more complicated systems.Comment: 14 pages, 2 figures, accepted in Physics Letters

    Nonperturbative and perturbative treatments of parametric heating in atom traps

    Get PDF
    We study the quantum description of parametric heating in harmonic potentials both nonperturbatively and perturbatively, having in mind atom traps. The first approach establishes an explicit connection between classical and quantum descriptions; it also gives analytic expressions for properties such as the width of fractional frequency parametric resonances. The second approach gives an alternative insight into the problem and can be directly extended to take into account nonlinear effects. This is specially important for shallow traps.Comment: 12 pages, 2 figure

    Collective vs local measurements in qubit mixed state estimation

    Get PDF
    We discuss the problem of estimating a general (mixed) qubit state. We give the optimal guess that can be inferred from any given set of measurements. For collective measurements and for a large number NN of copies, we show that the error in the estimation goes as 1/N. For local measurements we focus on the simpler case of states lying on the equatorial plane of the Bloch sphere. We show that standard tomographic techniques lead to an error proportional to 1/N1/41/N^{1/4}, while with our optimal data processing it is proportional to 1/N3/41/N^{3/4}.Comment: 4 pages, 1 figure, minor style changes, refs. adde
    corecore