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ABSTRACT Q W d  Using simple physical arguments we investigate the capabilities of a quantum computer based on cold 
trapped ions of the type recently proposed by Cirac and Zoller. From the limitations imposed on such a 
device by decoherence due to spontaneous decay, laser phase coherence times, ion heating and other 
possible sources of error, we derive bounds on the number of laser interactions and on the number of ions 
that may be used. As a quantitative measure of the possible petformamx of these devices, the largest 
number which may be factored using Shots quantum factoring algorithm is determined for a variety d 
species of ion. 
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1. INTRODUCTION 
A quantum computer stores binary numbers in the quantum states of hvo-level systems (“qubits”), 

allowing the possibility of computation with coherent superpositions of numbers’. Because a single 
quantum operation can afC&t a superposition of many numbers in parallel, a quantum computer can 
efficiently solve certain classes of problems that are currently intractable on classical computers, such as the 
determination of the prime factors of large numbers’. These problems are of such impottance that there is 
now considerable interest in the practical implementation of a quantum compute?. There are three criteria 
which designs for quantum computers must meet: the qubits must be suffkiently isolated from the 
environment so that the coherence of the quantum states can be maintained throughout the computation; 
there must be a method of controlling the states of the qubits in order to effect the logical “gate” operations; 
and there must be a highly efficient method for measuring the final quantum state in order to find the 
answer. 

J. I. Cirac and P. Zoller of the University of Innsbruck have proqsed what seems to be the most 
promising design for the implementation of a quantum computer to date . A number of identical ions are 
trapped and cooled by a linear radio-frequency quadrupole trap to form a quantum register. The radio- 
frequency trap potential gives strong confinement of the ions in the Y and 2 directions transverse to the trap 
axis, while an electrostatic potential forces &he ions to oscillate in an effective harmonic potential in the 
axial direction ( X )  (see fig.l). After laser cooling the ions become localized along the trap axis with a 
spacing determined by their Coulomb repulsion and the confining axial potential. The normal mode of the 
ions’ collective oscillations which has the lowest f q u e n q  is the axial center of mass (CM) mode, in 
which all the trapped ions oscillate together. A qubit is the electronic ground state lg> and a long-lived 
excited state le> of the trapped ions. The electronic configuration of individual ions, and the quantum state 
of their collective CM vibrations can be manipulated by coherent interactions of the ion with a laser beam, 
in a standing wave configuration, which can be pointed at any of the ions. The CM mode of axial 
vibrations may then be used as a “quantum data bus” to implement the quantum logical gates. Once the 
quantum computation has been completed, the readout is performed through the mechanism of quantum 
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jumps. Several features of this scheme have been demonstrated experimentally, mostly using a single 
trapped ~:II‘*~. More detailed discussions of the Cirac and Zoller design have been given by Steam’ and 
by James. 

The unavoidable interaction of a quantum computer with its environment places C0rr;idexable 
limitations on the capabilities of such devicesg. In this paper we present a quantitative assessment of these 
limitations for a computer based on the Cirac-Zoller cold-trapped-bn design”. There are two 
fundamentally dif€mnt types of decoherence during a computation: the intrinsic limitation imposed by 
spontaneous decay from various quantum states of the ions; and practical limitations such as the random 
phase fluctuations of the laser driving the computational transitions or the heating of the ions’ vibrational 
motion. One could, in principle, expect that as experimental techniques are refined, the effects of these 
practical limitations may be reduced until the intrinsic limit of computational capability due to 
spontaneous emission is attained. 

Beam 

Figure 1. A schematic illustration of the Cirac-Zoller quantum 
computer. The laser beam is in a standing wave codiguration and can 
be steered from ion to ion. 

2. FUNDAMENTAL PERFORMANCE CONSTRAINTS 
2.1 Effect of extraneous phonon states 

There are two types of laser pulse that a~ required in order to mlix Cirac and Zoller’s scheme f a  
quantum computation. The first are pulses that are tuned precisely to the resonance frequency of the le> to 
1g> transition of the qubits, ideally configured so that the ion lies at the node of the laser standing wave 
(“V-pulses”); the second type of pulse is tuned to the CM phonon sideband of the transition, arianged so 
that the ion lies at the antinode of the standing wave (“U-pulses”)”. It is the second type of pulse, which 
can excite both the internal degrees of freedom of the ion and the motion of the ions in the trap, which is 
the most challenging experimentally, and it is the ability to execute successfully these pulses that is an 
important limiting factor in the realization of a practical device. The Hamiltonian for the interaction of the 
U-pulses is given by the following expression5: 

In this formula, i2 is the Rabi frequency for the laser-ion interaction, L is the number of ions in k2 t r a .  
(6’) is the annihilation (creation) operator for phonons of the CM mode and T] = (tt w2cos28/2A4c vd is 
the Lamb-Dicke parameter (here o is the laser angular frequency, 8 the angle between the laser and the trap 
axis, v, issthe angular fquency of the ions’ axial CM mode and M the mass of each ion). A 
calculation , based on a pertuhative analysis of the excitation of honon modes other than the CM mode, 
shows that this Hamiltonian is valid provided that (2.6Rq/vXdL) << 1 . The duration of each 2 x  U-pulse 
is t~=2nv!U2q. For siniplicity we will assume that all of the U-pulses required for the calculation are d 
this duration. In order to avoid excitation of exqraneous phonon modes, the duration of each U-pulse is 
must be limited by the following inequality: 
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This result can also be obtained approximately from the simple uncertainty principle argument that there 
must not be appreciable power at the frequencies of the resonances associated with lattice vibrations. 

2 2  Effect of spontaneous emission from the upper level of the qubit 
The influence of spontaneous emission on a quantum computation with happed ions depends on the 

natural lifetime of the excited state le> of each qubit; the number of ions, L ,  being used; and the quantum 
states of those ions. The number of ions which are not in their ground states varies as the calculation 
progresses, with ancillary ions being introduced and removed from the computation The progression aE 
the ions’ states can be characteizd well by an &kcthe number of ionsj Le , which have a non-zero 
population in the excited state le>. In the case of Shor’s factoring algorithm , a reasonable estimate is Le = 
2 U 3 .  

To estimate the effect of decoherence during the implementation of Shor’s algorithm, we will consider 
the following simple process: a series of laser pulses of appropriate strength and duration ( d 2  pulses) is 
applied to 2Ll3 ions, causing each of them to be excited into an equal superposition state (je>+(g>)/d2. 
After an interval T, a second series of laser pulses (-d2 pulses) is applied, which, had there been no 
spontaneous emission, would cause each ion to be returned to its ground state. TRis is the “ C O I T ~ ~ ”  result 
of our pseudocomputation If there were spontaneous emission from one or more of the ions, then the ions 
would finish in some other, “incomct” state. This process involves the sort of superposition states that 
will occur during a typical quantum computation, and so the analysis of decoherence effeds in this 
procedure will give some insight into how such & i  influence a real computation The probability d 
obtaining a correct result is P(T) = l-LT/6q where ro is the natural lifetime of the excited state le>. Thus 
the effective coherence time of the computer is 6rdL. 

The total time taken to complete a calculation will be approximately equal to the number of laser pulses 
required multiplied by the duration of each pulse. The time taken to switch the laser beam from ion to ion 
is assumed to be negligible. The interaction of U-pulses with the ions is considerably weaker than the V- 
pulses, and so, assuming constant laser intensity, the U-pulse duration must be longer. Hence, in 
calculating the total time required to perform a quantum computation, we will neglect the time required for 
the V-pulses. Because the entire calculation must be performed in a time less than the coherence time d 
the computer, we obtain the inequality Nutu < 670/L. If we substitute from (2) we obtain the following 
constraint on the values of Nu and L: 

NUL e 0.377,~~ , (3) 

where Nu is the total number of U-pulses required for the calculation. 

2.3 Effect of extraneous atomic states 
Figure 2 shows a simplified energy level diagram for typical alkali-like ions which are suitable for use 

in a quantum computer of the type we are discussing. A laser field, preciseIy tuned to the le> to /g> 
transition wavelenglh is used to perform Rabi flips between these two levels. However as these operations 
are being performed there will be a small probability of exciting other quantum levels of the ion; if one d 
these levels were spontaneously to emit a photon during the computation, then the coherence of the 
computer will be lost. 

If the average probability of some exqraneous level 13> being excited is PJ, then to avoid decoherence 
due to this mechanism we require that Nd&k3 << 1, where .zjis the lifetime of the extraneous level 13>. 
The probability P3 can be shown to be given approximately by the formula P3 =i f22702.333/4r3Az;13 , where 
A is the detuning between the transition le> to 1g> and the transition 13> to ]g>, h is the resonance 
wavelength of the le> to 1g> qubit transition and is the resonance wavelength of the 13> to lg> 
transition, Using (2) and the definition of the Lamb-Dicke parameter, we -fore obtain the following 
constraint: 
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Figure 2. Simplified energy level diagram for alkali like ions. The state 
1g> is the ground state, le> is the metastable first excited state used as the 
upper level of the qubit and 13> is some short-lived “extraneous” level. 

2.4 Effect of laser spot size 
In order to attain the highest possible computational capability, one will need to minimize the duration 

of each laser pulse. Hence, according to (2), it will be advantageous to employ an ion trap with the largest 
possible value of the trap frequexy v,. However, the avial frequency cannot be made arbitrarily large 
because, in order to avoid crosstalk between adjacent ions, the minimum inter-ion spacing must be much 
larger than the size of the focal spot of the laser beam. The minimum separation distance between two ions 
occurs at the center of the string of ions, which can be calculated by solving for the equilibrium positions d 
the ions numerically, resulting in the following expression* : 
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where e is the electron charge, eo is the permittivity of a vacuum and M is the mass of each ion The 
spatial distribution of light in focal regions is well known”. The approximate diameter of the focal spot is 
x,, = fl, where 1 is the laser wavelength and F the focal ratio of the focusing system (ie. the ratio of the 
focal length to the diameter of the exit pupil). Hence the requirement that the ion separation must be large 
enough to avoid cross-talk between ions, Le. that xmh >> x,, leads to the following constraint on the 
value of the tmp frequency: 

V x P 4  << 

3. PERFORMANCE CONSTRAINTS BASED ON ATOMIC DATA 
It will be convenient to write the trap angular frequency v, in terms a frequency in units of MHz, i.e., v, 

= 2nfx lo6. Then the inequalities (3) and (4) may then be written in the simplified form 



where the constants A and B depend on the species of ion chosen.. We will be considering four different 
species of io& all of which have the property that their first excited state above the ground state is 
metastable. 'Ihese ions are: 
(i) Hg': mass number 198; is a sublevel of the 5d 6s DN level, lg> is a sublevel of the 5d106s  SI^ 

level and 13> is a sublevel of the 5d"Gp 2Pln level: A = 281.5 nm; q = 0.098 sec, A3= 194.2 nm; q= 
2.3 nsec. 

(ii) Ca': mass number 40; le> is a sublevel of the 3 'Dm level, lg> is a sublevel of the 4 'Sin level and 
13> is a sublevel of the 4 'Pin level: 1 = 732 nm; 4 = 1.16 sec, A3= 397 nm; 73= 7.7 nsec. 

(iii) Bo': mass number 138; is a sublevel of the 5 'DN level, Jg> is a sublevel of the 6 2Sln level and 
13> is a sublevel of the 6 'Pin level: 1 = 1.761 pm; 'so = 47 sec, &= 493 nm; 8= 11 nsec. 

(iv) Sr': mass number 88; le> is a sublevel of the 4d 'Dvl level, 1g> is a sublevel of the 5s 2Sln level and 
13> is a sublevel of the 5p 'Ptn level: A = 687 nm; ro = 395 msec, &= 422 nm; 73= 7.9 nsec. 

References for this data are given in*. Values of the parameters A and B for these ions are given in tabfel. 
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Table 1: Values of important parameters defined in the text 
for four different types of ion 

The two inequalities given in (7) imply that there is a optimum value of the trap frequency at which the 
product NUL will have a maximum allowed value. This optimum fiquexy is given by the following 
fornula: 

= (B/ Ar'3. 

The values of$ for our sample ions are given in table 1. Thus the constraint on the performance of the 
quantum computer due to decoherence now reads 

This relationship is plotted in figure 3 for the four different species of ion we are considering. 

When operating the ion trap computer at frequency$, (6) implies that there is a maximum value for the 
number of ions L,, which can be used in the trap. If more ions than L ,  ions are loaded, then the laser 
beam will be unable to resolve the individual qubits, resulting is errors in the calculation The values cf 
L,, can be calculated from (6); they are also given in table 1 (we have assumed an angle 8 = 80" and a focal 
ratio F = 1). As can be seen, when operating the trap with a few dozen ions at the optimum fquercy 
given by (8), there should be no particular difficulty about resolving the ions. 

4. QUANTUM ALGORITHMS 
We will now apply the bound (9) to Shor's factor finding algorithm'. Let I be the number of bits of the 

integer we wish to factor. A carefid analysis of a version of this algorithm reveals that the required number 
of ions and Upulses are given by: 

Nu = [29213-15112+81+2]/3 . (1 1) 

Equations (10) and (1 1) define a curve in (L,  NU) space, which taken in conjunction with the inequality (9) 
allow us to determine the largest number of ions that can be used to implement Shor's algorithm in an ion 

The angle 0 in q.(4) does not depend on the choice of ion; we have used B = 80" to evaluate the parameter B. 



trap computer with bounded loss of coherence. The linear relationship between L and I, (lo), can then be 
used to determine the largest number that can be factored. 

Numberof 
pulses 

Nu 

0 10 20 30 40 M 
Number of Ions, L 

Figure 3. The bounds on the numbers of ions, L, and the number d 
U-pulses, NU, that may be used in a quantum computation without 
loss of coherence. The allowed values of NU and L lie to the left cf 
the cuxves. Curves for four ions are plotted. The unbroken line is 
the “factorization curve”, specified by (10) and (1 l), which represents 
those values of NU and L which are required for execution of Shor’s 
algorithm, the heavy black dots on this line represent the values d 
NU and L required to factor a number of I bits (I= 1, 2, .-.lo). 

In figure 3 we have plotted the curves which limit the allowed values of L and NU, as given by (9). We 
have also plotted, with a solid line, the “curve of factorization” defined by (10) and (1 1). The interception 
of the limiting curves for the different ions with the curve of factorization gives us the largest allowed value 
for the number of ions. Examining these cwes ,  we find that the size of the largest integers that can be 
factored by a Cirac-Zoller quantum computer based on Hg’, Ca’, Bu‘ or 5k+ ions are 4 bits, 6 bits, 9 bits 
and 5 bits, respectively. 

5. EXPERIMENTAL DECOHERENCE EFFECTS 
One may calculate the limits on factoring due to other causes of decoherence by a similar procedure to 

that used above. In this case, we will assume that the loss of quantum coherence due to sundry ef€m such 
as random fluctuations of the laser phase or the heating of the ions’ vibrational motion can be characterized 
by a single coherence time re. The eEkcts of other muses of error, such as imprecise measurement of the 
areas of ~-pulses, which do not result in decoherence but nevertheless lead to incorrect results in a 
computatioq can also be characterized by the time .re. Thus, in place of (3) we now have the inequality 
NU~U < .re. Using (2) we obtain the following constraint on the vdue of the number of laser pulses NU 
which can be used in a quantum computation without significant loss of Coherence: 

Using (1 1) and the values of$ given in table 1, one can solve (1 2) to determine the number of bits 1 in the 
largest number which may be factored. In this case the value of 1 will depend on the specie of ion and the 
value of the coherence time G. In figure 4 we have plotted the values of 1 as a function of the experimental 
coherence time for the four species of ions discussed above. As re increases, the largest number that can be 
factored also increases, until the limit due to spontaneous emission discussed above is attained. 
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Figure. 4. The variation of the number of bits I in the largest integer 
that may be fadored with the experimental coherence time for the ions 
discussed in the text The plateaus in the ewes for Hg’, Ca’ and Sr‘ 
are the limits determined by decoherence discussed above. 

The slowest heating rare for a single trapped ion so far re rted is 6 phonons per second (i.e. re = 0.17 
sec)”, and the laser phase coherence times longer than 10 sec have been achieved by several groupst4. 
Comparing these numbers with fig.4, we see that, in principle, current technology is capable of producing a 
quantum computer that couId factor at least smaIl numbers of several bits. 

The various causes of experimental decoherence which are mentioned above are all the subject of on- 
going research It is not clear, for example, how laser phase fluctuations will && quantum computations; 
it may be the case that the laser need be coherent only over the period required to execute each quantum 
gate operation Furthermore, the heating rate of the ions’ vibrational motion as a function of the number d 
trapped ions is not known. Other methods of coherent population transfer, which may be less susceptible 
to the effects of phase fluctuations, for example stimulated Raman transitions between magnetic sublevels d 
the ground state may offer considerable advantages. 

.Po 

We have ignored in the above calculation the influence of quantum error correction in the calculation It 
is clear that if quantum computation is to overcome decoherence and other errors, then some form of error 
correction must be used ekqensively. This is a field that is the subject of intense ongoing research The 
latest results suggest that ifquantum4gate operations can be performed within some threshold degree d 
accuracy (variousl estimated as 10 to lo-“) then arbitrarily complex quantum computations can be 
performed reliably . These theoretical results give a challenging but not necessarily impossible goal for 
various technologies to aim at. The results presented here give reasonable grounds for optimism: fof 
example, to factor a 6 bit number, (yhich should be possible using a quantum computer based on Cu 
ions) requires of the order of 2.0 x 10 operations. Thus taking into account decoherence effocts, the clew 
ofaccuracy ofeachopention will be of the order of 5.0 x lo”, which is encouragingly near the required 
accuracy threshold. Note however we have not taken into account errors due to operational causes, such as 
inexact pulse areas or laser intensity fluctuations. 
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6. CONCLUSIONS 
We have derived quantitative bounds which show how the computational capabilities of a trapped ion 

quantum computer depend on the relevant physical parameters and determine the computational “space” (L)  
and “time” (NU) combination that should be optimized for the most effective algorithms. The effect of this 
bound has been illustrated by calculating the size of the largest number that may be factored using a 



computer based on various species of ion. Our results show there is reason for cautious optimism about the 
possibility of factoring at least small numbers using a first generation quantum computer design based on 
cold trapped ions. However, the large number of precise laser operations required and the number of ions 
involved indicates that even this computationally modest goai will be extremely challenging 
experimentally. 
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