859 research outputs found
Ages of young stars
Determining the sequence of events in the formation of stars and planetary
systems and their time-scales is essential for understanding those processes,
yet establishing ages is fundamentally difficult because we lack direct
indicators. In this review we discuss the age challenge for young stars,
specifically those less than ~100 Myr old. Most age determination methods that
we discuss are primarily applicable to groups of stars but can be used to
estimate the age of individual objects. A reliable age scale is established
above 20 Myr from measurement of the Lithium Depletion Boundary (LDB) in young
clusters, and consistency is shown between these ages and those from the upper
main sequence and the main sequence turn-off -- if modest core convection and
rotation is included in the models of higher-mass stars. Other available
methods for age estimation include the kinematics of young groups, placing
stars in Hertzsprung-Russell diagrams, pulsations and seismology, surface
gravity measurement, rotation and activity, and lithium abundance. We review
each of these methods and present known strengths and weaknesses. Below ~20
Myr, both model-dependent and observational uncertainties grow, the situation
is confused by the possibility of age spreads, and no reliable absolute ages
yet exist. The lack of absolute age calibration below 20 Myr should be borne in
mind when considering the lifetimes of protostellar phases and circumstellar
material.Comment: Accepted for publication as a chapter in Protostars and Planets VI,
University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C.
Dullemond, Th. Hennin
Recommended from our members
Photometric modeling of a cometary nucleus: taking Hapke modeling to the limit
Chromospheric activity, lithium and radial velocities of single late-type stars possible members of young moving groups
We present here high resolution echelle spectra taken during three observing
runs of 14 single late-type stars identified in our previous studies (Montes et
al. 2001b, hereafter Paper I) as possible members of different young stellar
kinematic groups (Local Association (20 - 150 Myr), Ursa Major group (300 Myr),
Hyades supercluster (600 Myr), and IC 2391 supercluster (35 Myr)). Radial
velocities have been determined by cross correlation with radial velocity
standard stars and used together with precise measurements of proper motions
and parallaxes taken from Hipparcos and Tycho-2 Catalogues, to calculate
Galactic space motions (U, V, W) and to apply Eggen's kinematic criteria. The
chromospheric activity level of these stars have been analysed using the
information provided for several optical spectroscopic features (from the Ca II
H & K to Ca II IRT lines) that are formed at different heights in the
chromosphere. The Li I 6707.8 AA line equivalent width (EW) has been determined
and compared in the EW(Li I) versus spectral type diagram with the EW(Li I) of
stars members of well known young open clusters of different ages, in order to
obtain an age estimation. All these data allow us to analyse in more detail the
membership of these stars in the different young stellar kinematic groups.
Using both kinematic and spectroscopic criteria we have confirmed PW And, V368
Cep, V383 Lac, EP Eri, DX Leo, HD 77407, and EK Dra as members of the Local
Association and V834 Tau, pi^{1} UMa, and GJ 503.2 as members of the Ursa Major
group. A clear rotation-activity dependence has been found in these stars.Comment: Latex file with 19 pages, 7 figures tar'ed gzip'ed. Full postscript
(text, figures and tables) available at
http://www.ucm.es/info/Astrof/p_skg_stars_I_fv.ps.gz Accepted for publication
in: Astronomy & Astrophysics (A&A
White Dwarf Cosmochronology in the Solar Neighborhood
The study of the stellar formation history in the solar neighborhood is a
powerful technique to recover information about the early stages and evolution
of the Milky Way. We present a new method which consists of directly probing
the formation history from the nearby stellar remnants. We rely on the volume
complete sample of white dwarfs within 20 pc, where accurate cooling ages and
masses have been determined. The well characterized initial-final mass relation
is employed in order to recover the initial masses (1 < M/Msun < 8) and total
ages for the local degenerate sample. We correct for moderate biases that are
necessary to transform our results to a global stellar formation rate, which
can be compared to similar studies based on the properties of main-sequence
stars in the solar neighborhood. Our method provides precise formation rates
for all ages except in very recent times, and the results suggest an enhanced
formation rate for the solar neighborhood in the last 5 Gyr compared to the
range 5 < Age (Gyr) < 10. Furthermore, the observed total age of ~10 Gyr for
the oldest white dwarfs in the local sample is consistent with the early
seminal studies that have determined the age of the Galactic disk from stellar
remnants. The main shortcoming of our study is the small size of the local
white dwarf sample. However, the presented technique can be applied to larger
samples in the future.Comment: 25 pages, 10 figures, accepted for publication in the Astrophysical
Journa
Rotation of Late-Type Stars in Praesepe with K2
We have Fourier analyzed 941 K2 light curves of likely members of Praesepe,
measuring periods for 86% and increasing the number of rotation periods (P) by
nearly a factor of four. The distribution of P vs. (V-K), a mass proxy, has
three different regimes: (V-K)<1.3, where the rotation rate rapidly slows as
mass decreases; 1.3<(V-K)<4.5, where the rotation rate slows more gradually as
mass decreases; and (V-K)>4.5, where the rotation rate rapidly increases as
mass decreases. In this last regime, there is a bimodal distribution of
periods, with few between 2 and 10 days. We interpret this to mean
that once M stars start to slow down, they do so rapidly. The K2 period-color
distribution in Praesepe (790 Myr) is much different than in the Pleiades
(125 Myr) for late F, G, K, and early-M stars; the overall distribution
moves to longer periods, and is better described by 2 line segments. For mid-M
stars, the relationship has similarly broad scatter, and is steeper in
Praesepe. The diversity of lightcurves and of periodogram types is similar in
the two clusters; about a quarter of the periodic stars in both clusters have
multiple significant periods. Multi-periodic stars dominate among the higher
masses, starting at a bluer color in Praesepe ((V-K)1.5) than in the
Pleiades ((V-K)2.6). In Praesepe, there are relatively more light curves
that have two widely separated periods, 6 days. Some of these could
be examples of M star binaries where one star has spun down but the other has
not.Comment: Accepted by Ap
Magnetic Activity Cycles in the Exoplanet Host Star epsilon Eridani
The active K2 dwarf epsilon Eri has been extensively characterized, both as a
young solar analog and more recently as an exoplanet host star. As one of the
nearest and brightest stars in the sky, it provides an unparalleled opportunity
to constrain stellar dynamo theory beyond the Sun. We confirm and document the
3 year magnetic activity cycle in epsilon Eri originally reported by Hatzes and
coworkers, and we examine the archival data from previous observations spanning
45 years. The data show coexisting 3 year and 13 year periods leading into a
broad activity minimum that resembles a Maunder minimum-like state, followed by
the resurgence of a coherent 3 year cycle. The nearly continuous activity
record suggests the simultaneous operation of two stellar dynamos with cycle
periods of 2.95+/-0.03 years and 12.7+/-0.3 years, which by analogy with the
solar case suggests a revised identification of the dynamo mechanisms that are
responsible for the so-called "active" and "inactive" sequences as proposed by
Bohm-Vitense. Finally, based on the observed properties of epsilon Eri we argue
that the rotational history of the Sun is what makes it an outlier in the
context of magnetic cycles observed in other stars (as also suggested by its Li
depletion), and that a Jovian-mass companion cannot be the universal
explanation for the solar peculiarities.Comment: 6 pages, 3 figures, 1 table, ApJ Letters (accepted
A multi-color optical survey of the orion nebula cluster. II. The H-R diagram
We present a new analysis of the stellar population of the Orion Nebula Cluster (ONC) based on multi-band optical
photometry and spectroscopy.We study the color–color diagrams in BVI, plus a narrowband filter centered at 6200 Å, finding evidence that intrinsic color scales valid for main-sequence dwarfs are incompatible with the ONC in the M
spectral-type range, while a better agreement is found employing intrinsic colors derived from synthetic photometry, constraining the surface gravity value as predicted by a pre-main-sequence isochrone.We refine these model colors even further, empirically, by comparison with a selected sample of ONC stars with no accretion and no extinction. We consider the stars with known spectral types from the literature, and extend this sample with the addition of 65 newly classified stars from slit spectroscopy and 182 M-type from narrowband photometry; in this way, we isolate a sample of about 1000 stars with known spectral type. We introduce a new method to self-consistently derive the stellar reddening and the optical excess due to accretion from the location of each star in the BVI color–color diagram. This enables us to accurately determine the extinction of the ONC members, together with an estimate of their accretion luminosities. We adopt a lower distance for the Orion Nebula than previously assumed, based on recent parallax measurements. With a careful choice of also the spectral-type–temperature transformation, we produce the new Hertzsprung–Russell diagram of the ONC population, more populated than previous works. With respect to previous works, we find higher luminosity for late-type stars and a slightly lower luminosity for early types. We determine the age distribution of the population, peaking from ~2 to ~3 Myr depending on the model. We study the distribution of the members in the mass–age plane and find that taking into account selection effects due to incompleteness,
removes an apparent correlation between mass and age.We derive the initial mass function for low- and intermediate mass members of the ONC, which turns out to be model dependent and shows a turnover at M ≲ 0.2 M_⊙
Quantifying the contamination by old main-sequence stars in young moving groups: the case of the Local Association
The associations and moving groups of young stars are excellent laboratories
for investigating stellar formation in the solar neighborhood. Previous results
have confirmed that a non-negligible fraction of old main-sequence stars is
present in the lists of possible members of young stellar kinematic groups. A
detailed study of the properties of these samples is needed to separate the
young stars from old main-sequence stars with similar space motion, and
identify the origin of these structures. We used stars possible members of the
young (~ 10 - 650 Myr) moving groups from the literature. To determine the age
of the stars, we used several suitable age indicators for young main sequence
stars, i.e., X-ray fluxes and other photometric data. We also used
spectroscopic data, in particular the equivalent width of the lithium line Li I
and Halpha, to constrain the range of ages of the stars. By combining
photometric and spectroscopic data, we were able to separate the young stars
(10 - 650 Myr) from the old (> 1 Gyr) field ones. We found, in particular, that
the Local Association is contaminated by old field stars at the level of ~30%.
This value must be considered as the contamination for our particular sample,
and not of the entire Local Association. For other young moving groups, it is
more difficult to estimate the fraction of old stars among possible members.
However, the level of X-ray emission can, at least, help to separate two age
populations: stars with <200 Myr and stars older than this. Our results are
consistent with a scenario in which the moving groups contain both groups of
young stars formed in a recent star-formation episode and old field stars with
similar space motion. Only by combining X-ray and optical spectroscopic data is
it possible to distinguish between these two age populations.Comment: 7 pages, 7 figures. Accepted for publication in A&
- …
