88 research outputs found

    Surface response of spherical core-shell structured nanoparticle by optically induced elastic oscillations of soft shell against hard core

    Full text link
    The optically induced oscillatory response of a spherical two-component, shell-core structured, nanoparticle by nodeless elastic vibrations of soft peripheral shell against hard and dynamically immobile inner core is considered. The eigenfrequencies of the even-parity, spheroidal and odd-parity torsional vibrational modes trapped in the finite-depth shell are obtained which are of practical interest for modal specification of individual resonances in spectra of resonant scattering of long wavelength electromagnetic waves by ultrafine particles.Comment: Surface Review and Letters (World Scientific) Year: 2009 Vol: 16 Issue: 1 (February 2009) Page: 5 - 1

    Elasticity of nuclear medium as a principal macrodynamical promoter of electric dipole pygmy resonance

    Get PDF
    Motivated by arguments of the nuclear core-layer model formulated in [S.I. Bastrukov, J.A. Maruhn, Z.Phys. A 335 (1990) 139], the macroscopic excitation mechanism of electric pygmy dipole resonance (PDR) is considered as owing its origin to perturbation-induced effective decomposition of nucleus into two spherical domains - undisturbed inner region treated as static core and dynamical layer undergoing elastic shear vibrations. The focus is placed on the imprinted in the core-layer model mechanism of emergence of the low-energy dipole electric resonant excitation as Goldstone soft mode of translation layer-against-core oscillations. To accentuate this attitude we regain the obtained in the above paper spectral equation for the frequency of spheroidal elastic vibrations trapped in the finite-depth layer, but by working from canonical equation of elastic dynamics of continuous medium. The obtained analytic equations for the frequency of dipole vibrational state in question and its excitation strength exhibit fundamental character of this soft dipole mode of nuclear resonant response.Comment: Accepted in Phys.Lett.

    Study of the Possibility of Reducing the Slow Fluctuations of the Reactivity and Thermal Power of the IBR-2M Reactor

    Get PDF
    This paper presents an artificial neural network method for long-term prediction of the thermal dynamic parameters of the IBR-2M reactor. Attention is focused mainly on the prediction of the temperature and sodium flow at the entry into the core as well as the thermal power. It is shown that the prediction makes it possible to reduce by a factor of 3 the influence of slow fluctuations of reactivity on the power and thereby reduce the operational requirements for the automatic power stabilization system

    Torsional nodeless vibrations of quaking neutron star restored by combined forces of shear elastic and magnetic field stresses

    Full text link
    Within the framework of Newtonian magneto-solid-mechanics, relying on equations appropriate for a perfectly conducting elastic continuous medium threaded by a uniform magnetic field, the asteroseismic model of a neutron star undergoing axisymmetric global torsional nodeless vibrations under the combined action of Hooke's elastic and Lorentz magnetic forces is considered with emphasis on a toroidal Alfv\'en mode of differentially rotational vibrations about the dipole magnetic moment axis of the star. The obtained spectral equation for frequency is applied to \ell-pole identification of quasi-periodic oscillations (QPOs) of X-ray flux during the giant flares of SGR 1806-20 and SGR 1900+14. Our calculations suggest that detected QPOs can be consistently interpreted, within the framework of this model, as produced by global torsional nodeless vibrations of quaking magnetar if they are considered to be restored by the joint action of bulk forces of shear elastic and magnetic field stresses.Comment: 18 pages, 5 figures; accepted in Ap

    A Variational Solution of the Schrödinger Equation in an Inhomogeneous Central Field

    Get PDF
    The present work is devoted to the computer modeling of emission processes from the graphene surface which is a promising material for modern applications. We examine the effect of the ion field inhomogeneity on the variational solution of the Schrödinger equation for the ground state of a loosely bound electron of a hydrogen-like carbon atom, which simulates the graphene model. This shows a significant impact of the allowance for the field inhomogeneity to the ground state of the electron

    Time-based Reconstruction of Free-streaming Data in CBM

    Get PDF
    Traditional latency-limited trigger architectures typical for conventional experiments are inapplicable for the CBM experiment. Instead, CBM will ship and collect time-stamped data into a readout buffer in a form of a time-slice of a certain length and deliver it to a large computer farm, where online event reconstruction and selection will be performed. Grouping measurements into physical collisions must be performed in software and requires reconstruction not only in space, but also in time, the so-called 4-dimensional track reconstruction and event building. The tracks, reconstructed with 4D Cellular Automaton track finder, are combined into event-corresponding clusters according to the estimated time in the target position and the errors, obtained with the Kalman Filter method. The reconstructed events are given as inputs to the KF Particle Finder package for short-lived particle reconstruction. The results of time-based reconstruction of simulated collisions in CBM are presented and discussed in details

    Molecular Dynamic Simulation of Water Vapor and Determination of Diffusion Characteristics in the Pore

    Get PDF
    One of the varieties of pores, often found in natural or artificial building materials, are the so-called blind pores of dead-end or saccate type. Three-dimensional model of such kind of pore has been developed in this work. This model has been used for simulation of water vapor interaction with individual pore by molecular dynamics in combination with the diffusion equation method. Special investigations have been done to find dependencies between thermostats implementations and conservation of thermodynamic and statistical values of water vapor – pore system. The two types of evolution of water – pore system have been investigated: drying and wetting of the pore. Full research of diffusion coefficient, diffusion velocity and other diffusion parameters has been made
    corecore