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Abstract. We consider a generalization of the Rayleigh equation for the description of
the dynamics of a spherical gas bubble oscillating near an elastic or rigid wall. We show
that in the non–dissipative case, i.e. neglecting the liquid viscosity and compressibility, it
is possible to construct the general analytical solution of this equation. The correspond-
ing general solution is expressed via the Weierstrass elliptic function. We analyze the
dependence of this solution properties on the physical parameters.

1 Introduction

Understanding the dynamics of the spherical gas bubbles in a liquid is of high importance for various
applications such as biomedical and industrial ones [1]. There are several models for the description of
gas bubbles oscillations, which mostly generalize the Rayleigh equation (see, e.g. [1, 2]). Although,
usually, these models are studied numerically, it has been recently shown [3–5] that it is possible to
study such models analytically. For example, in [3, 4] the general solutions of the Rayleigh equation
and its N-dimensional generalization for both an empty and a gas–filled bubble were found. In this
work we consider another generalization of the Rayleigh equation, which describes oscillations of a
spherical gas bubble near an elastic or rigid wall [6, 7]. This model has not been studied analytically
yet and, therefore, the aim of this work is to find its general solution and investigate the influence of
the physical parameters on the properties of this solution.

2 Main results

We consider the following equation
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which describes the motion of a spherical gas bubble near an elastic or rigid wall [6, 7], if one neglects
the liquid viscosity and compressibility. Here t is the time, R is the radius of the bubble, γ is the
polytropic exponent, ρ1 is the liquid density, σ is the surface tension, P̃0 = P0 + 2σ/R0, P0 is the
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ambient pressure of the gas inside the bubble, R0 is the ambient radius of the bubble and P is the
far–field pressure, which we assume to be constant. The parameter A is 1/(6d) for the rigid wall or

A =
(ρ1 − β)(β − ρ3)

6h(ρ1 + β)(ρ3 + β)
− ρ1 − β

6d(ρ1 + β)
− β − ρ3

(β + ρ3)6(d + h)
(2)

for the elastic wall. Here ρ2 is the wall density, ρ3 is the density of the material surrounding the wall,
β = ρ2ν/(1−ν) is a characteristic of the wall, ν is the Poisson ratio, h is the thickness of the wall given
in mm and d denotes the distance between the wall and the center of the bubble.

For finding the general solution of (1) we use the approach that was proposed in [3, 4]. First, we
introduce the dimensionless variables u = R/R0, τ = tω0, where

ω2
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Then, equation (1) can be rewritten as
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Note that equation (3) admits the following first integral for γ � 1

u3(1 + 3AR0u)u2
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2
3
εu3 + δu2 +
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3(γ − 1)

u3(1−γ) = C1, (4)

where C1 is an integration constant. This constant can be considered as the total energy of the bubble
and, therefore, is positive. Below we consider the case γ = 4/3, which corresponds to the behaviour
of diatomic gases between isothermal and adiabatic [3]. Note that the case of γ = 1, which correspond
to isothermal behaviour, is not considered due to appearance of a logarithmic term in the first integral
of (3).
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Figure 1. Solution (10) for the case of the elastic (curve 1) and rigid (curve 2) walls corresponding to the initial
conditions u(0) = 0.7, ut(0) = 0

Then, at γ = 4/3, with the help of the transformations

v =
1
u
, dζ =

1
u2
√

1 + 3AR0u
dτ (5)
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Then, at γ = 4/3, with the help of the transformations
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from (3) we get
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Figure 2. Dependence of the angular frequency of solution (10) on the initial strain

The general solution of (6) is obtained in terms of the Weierstrass elliptic function

v =
8µ2℘{ζ − ζ0, g2, g3} + 8C1µ − δµ3 − 32α
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, (7)

where ζ0 is an arbitrary constant,
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and the parameter µ is a real solution of the following equation

εµ4 − 3(4C1µ − 16α − δµ3) = 0. (9)

Finally, inverting transformations (5) we can find the general solution of (3) as follows

u =
4µ3℘{ζ − ζ0, g2, g3} − 2C1µ

2 + 16αµ
8µ2℘{ζ − ζ0, g2, g3} + 8C1µ − δµ3 − 32α

, τ =

ζ∫

0

u2
√

1 + 3AR0u dξ. (10)

Formula (10) gives us parametric representation of the general solution of (3), where ζ can be consid-
ered as a parameter.

It can be shown that, for the physically relevant values of the parameters, solution (10) is periodic
with a real period. One can investigate the dependence of the period or angular frequency of this
solution on the parameters. For all analytical calculations we use the same values of the physical
parameters as in [6]. For the results presented in Figs. 1 and 2 we also assume that d = R0, i.e. the
bubble touches the wall. Notice that the typical range of bubbles oscillations frequency is ν = ω/2π =
106 ÷ 107 Hz.

Plots of solution (10) for both rigid and elastic wall cases are shown in Fig. 1. One can see that
both the period and magnitude of the oscillations in the case of an elastic wall are slightly smaller
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Figure 3. Dependence of angular frequency on the distance from the elastic wall for different values of the initial
strain for the rigid wall curve 1: u(0)=0.7; curve 2: u(0)=0.8; curve 3: u(0)=0.9 (left figure) and for the elastic
wall curve 1: u(0)=0.7; curve 2: u(0)=0.73; curve 3: u(0)=0.75 (right figure).

than those in the case of a rigid wall. In Fig. 2 the dependence of the dimensional angular frequency
of solution (10) is plotted in terms of the initial strain, i.e. on the ratio R(0)/R0 = u(0). This figure
shows us that the bubble oscillations are essentially nonlinear, since their frequency strongly depends
on the initial values. In Fig. 3 the dependence of the angular frequency of the bubble oscillations is
plotted in term of the distance from the bubble to the elastic or the rigid wall for different values of
the initial strain. One can see that in the both cases the frequency of oscillations decreases when the
bubble comes closer to the wall and also decreases with the initial strain. However, in the case of the
elastic wall the oscillation frequency is smaller than that in the case of the rigid wall.

3 Conclusion

In this work we have considered a model for the description of the dynamics of a spherical gas bubble
near an elastic or a rigid wall. We have shown that it is possible to construct the general analytical
solution of this model in the non–dissipative case. We have found this solution in explicit form in the
adiabatic case with the help of nonlocal transformations. Some physical properties of the obtained
solution have been discussed.

Acknowledgement

This work is supported by Russian Science Foundation project 17-71-10241.

References

[1] C.E. Brennen, Cavitation and bubble dynamics (Cambridge University Press, 2013) 286 pp.
[2] M.S. Plesset and A. Prosperetti, Annual review of fluid mechanics 9, 145–185 (1977)
[3] N.A. Kudryashov and D.I. Sinelshchikov, Journal of Physics A: Mathematical and Theoretical

47, 405202 (2014)
[4] N.A. Kudryashov and D.I. Sinelshchikov, Physics Letters A 379, 798–802 (2015)
[5] N.A. Kudryashov and D.I. Sinelshchikov, Regular and Chaotic Dynamics 20, 486–496 (2015)
[6] A.A. Doinikov, L. Aired, and A. Bouakaz, Physics in Medicine and Biology 56, 6951 (2011)
[7] A.A. Doinikov and A. Bouakaz, Journal of Applied Mechanics and Technical Physics 54,

867–876 (2013)

4

EPJ Web of Conferences 173, 03008 (2018) https://doi.org/10.1051/epjconf/201817303008
Mathematical Modeling and Computational Physics 2017


