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Abstract. The volume integral equation method is considered for magnetic systems. New
modeling results are reported.

1 Introduction
Issues concerning the volume integral equation method for the calculations of magnetic systems are
considered in the present report. We focus the following discussion on three new points:

1. Short description of the generators of a finite element based 3D grid enabling numerical solution.

2. Matrix element calculation algorithm.

3. Numerical results obtained for quadrupole magnet agree with those obtained by the famous code
TOSCA [1].

Other issues will be discussed in a forthcoming regular paper.

2 Volume integral equation method
Let B̄(ā), H̄(ā), M̄(ā) be the induction, the intensity and the magnetization of the magnetic field at the
point ā. The values B̄, H̄, M̄ are connected with the following nonlinear ratios:

H̄(ā) =
B̄(ā)

µ
(
|B̄(ā)|

)
µ0

, M̄(ā) =
B̄(ā)
µ0
− H(ā), (1)

where µ0 is the absolute magnetic permeability of the vacuum, µ(x) is the magnetic permeability.
The following integral equation takes place:

H̄(ā) = H̄S (ā) +
1

4π
∇ā

∫

G

(
M̄(x̄),∇a

1
|x̄ − ā|

)
dvx̄, (2)

where H̄S (ā) is the magnetic field from current winding, G is the area filled by iron. The field H̄S (ā)
can be found according to the Biot-Savart law:

H̄S (ā) =
1

4π
Rotā

∫

R3

J̄(x̄)
|x̄ − ā| dvx̄, (3)

�e-mail: akishin@jinr.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 173, 03001 (2018) https://doi.org/10.1051/epjconf/201817303001
Mathematical Modeling and Computational Physics 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/207967221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


where J̄(x̄) is the current density at x̄.
The difficulty of applying the integral approach is connected with the singularity of the kernel of

the integral equations. This is the reason why only a piecewise approximation of unknown parameters
within element division area is used in the famous code GFUN3D [2]. The alternative for the collo-
cation method is an integration over dividing elements. It allows to use higher order approximation
for the unknown variables. The most convenient mathematical approach for constructing such type of
approximations is the finite elements method (FEM).

Let us divide the area G into tetrahedrons {Gi}. We suppose that the fragmentation G =
⋃N

i=1 Gi

satisfies the requirements of FEM. Let us assume {P̄k, k = 1, . . . , L} is the set of all vertices in all
tetrahedrons {Gi}. Let us introduce the notation H̄k = H̄(P̄k), M̄k = M̄(P̄k), B̄k = B̄(P̄k). We denote
fk(x̄) as a node function, associated with the vertex P̄k. The functions { fk(x̄)} on each tetrahedron are
linear functions, equal to 1 at the vertex P̄k and to 0 at any other vertices. Using these notations we
define the linear approximations for the vectors B̄(ā), H̄(ā), M̄(ā):

B̂(ā) =
L∑

k=1

fk(ā)B̄k, M̂(ā) =
L∑

k=1

fk(ā)M̄k, Ĥ(ā) =
L∑

k=1

fk(ā)H̄k. (4)

We define a discretized formulation of the magnetostatics problem, using the finite element linear
approximation within the elements of the division:

L∑
j=1

∫

G

fi(ā) f j(ā)H̄ j dvā =
∫

G

fi(ā)H̄S (ā) dvā +
L∑

j=1

∫

G

fi(ā)
∇a

4π


∫

G

f j(x̄)
(
M̄ j,∇a

1
|x̄ − ā|

)
dvx̄

 dvā, i = 1, L.

(5)
Let the matrices [C] and [A] be matrices of [3L×3L] dimension, consisting of diagonal matrices [Ci j]
and non-diagonal matrices [Ai j] of [3 × 3] dimension:

[C] =



[C11] · · · [C1L]
...

. . .
...

[CL1] · · · [CLL]

 , [A] =



[A11] · · · [A1L]
...

. . .
...

[AL1] · · · [ALL]

 .

The matrices [Ci j] are the following diagonal matrices and the matrices [Ai j] satisfy the following
relation for any constant vector M̄:

[Ci j] = [E]
∫

G

fi(ā) f j(ā) dvā, [Ai j]M̄ =
∫

G

fi(ā) dvā
∇a

4π


∫

G

f j(x̄)
(
M̄,∇ā

1
|x̄ − ā|

)
dvx̄

 . (6)

We use the following notations:

B̂ =
(
B̄1, . . . , B̄L

)T
, M̂(B̂) = µ0

(
M̄(B̄1), . . . , M̄(B̄L)

)T
,

ĤS = µ0


∫

G

f1(ā)H̄S (ā) dvā, . . . ,
∫

G

fL(ā)H̄S (ā) dvā



T

.

Taking into account (1) the system (5) can be written as:

[C]B̂ = ĤS + ([A] + [C]) M̂(B̂). (7)

Using node functions of higher order similarly to (5) it is possible to formulate a discretization with
quadratic, cubic or higher approximation of variables within the element.
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Using node functions of higher order similarly to (5) it is possible to formulate a discretization with
quadratic, cubic or higher approximation of variables within the element.

3 Generation of the finite element mesh
To build a discretization for the integral equations (5), the region of calculations should be divided
into tetrahedrons satisfying the requirements of FEM. Depending on the task, there are different re-
quirements for the mesh elements. In subregions where the solution changes faster, more detailed
discretization is needed and, as a result, the element size must be smaller. And vice versa, within the
regions of slow solution changing, detailed division leads to a huge number of elements, thus compli-
cating solving the final discretized system of equations. Details of the multidimensional finite element
mesh generating are discussed in [3], where the 3D mesh generator 3dfemmesh oriented on modeling
electromagnetic fields in large-scale electrophysical machines has been proposed. The algorithm used
is based on the representation of the problem domain as a combination of standard macroblocks with
initial generation of a two-dimensional mesh on their boundary followed by generation of a three-
dimensional mesh in each block individually. The program has a graphical interface for the data entry
and a visual assessment of the quality of the partition, it calculates a number of criteria for evaluating
the quality of the resulting mesh.

4 Matrix elements calculation
The problem of defining matrix coefficients of the discretized equations can be reduced to calculating
sixfold, singular in general, integrals from (6) by two tetrahedrons. The simplest way to evaluate these
integrals done by a cubature. It might happen that the integrand function shows an isolated singularity
or, even worse, the function being integrated is singular at every point of the volume under integration.
In these cases the use of a cubature formula is not possible and we need suitable procedures for
evaluating the matrix coefficients. The method which allows to decrease the time necessary for the
calculation of the coefficients of the discretizated systems is described below. We start from the remark
that the matrix coefficients entering (6) can be represented generically as integrals:

Jn, j,l
m,i,k =

∫

Gm

∫

Gn

[
fi(x̄) f j(ā)

∂2

∂xk∂al

1
|x̄ − ā|

]
dvx̄ dvā.

Taking into account that { fp(x̄)} are linear functions and, as a consequence, the function gradient
vector is constant inside each tetrahedron, such volume integrals can be reduced to surface integrals:

Jn, j,l
m,i,k =

∮

∂Gm

∮

∂Gn

fi(x̄) f j(ā)(dS̄ x, ēk)(dS̄ a, ēl)
|x̄ − ā| − 0.5

∂ f m
i (x̄)
∂xk

∂ f n
j (ā)

∂al

∮

∂Gm

∮

∂Gn

(dS̄ x, dS̄ a)
|x̄ − ā| − (8)

−0.5
∂ f m

i (x̄)
∂xk

∮

∂Gm

∮

∂Gn

f j(ā)(dS a, ēl)
((x̄ − ā), dS̄ x)
|x̄ − ā| − 0.5

∂ f n
j (ā)

∂al

∮

∂Gm

∮

∂Gn

fi(x̄)(dS x, ēk)
((ā − x̄), dS̄ a)
|ā − x̄| .

The notation ∂ f m
i (x̄)/∂xk means that the derivative is calculated on the tetrahedron Gm. It is important

to note that the region G consists of a union of tetrahedrons. Then the borders {∂G} are triangles.
Thus, calculating the expressions (8) reduces a 6D integral to the sum of 4D integrals over two trian-
gles. There are four types of positional relationships of the triangles in space: triangles do not cross,
triangles have one mutual vertex, triangles have two mutual vertices, and triangles are congruent. For
the first type use of a cubature formula is possible. Meanwhile, in the other cases, the cubature is
unreliable due to the singularity of the expressions being integrated. Let us note that the expression
under integration in (8) can be represented as a sum of homogeneous functions. The method of inte-
gration from [4] allows to reduce the singular integrals of homogeneous functions to superpositions
of regular integrals of lower order, the calculation of which can be reliably done by cubature.

3

EPJ Web of Conferences 173, 03001 (2018) https://doi.org/10.1051/epjconf/201817303001
Mathematical Modeling and Computational Physics 2017



5 Iterative method for solving the nonlinear discretized system

To achieve the requested approximation accuracy in practice it is necessary to split the region G into
smaller elements, which leads to huge dimension rise of the nonlinear discretized systems of the
equations. The use of methods for handling high order matrices is extremely difficult. So, for solving
discretizated systems of equations (7) a simple iterative process is used:

[C]B̂k+1 = (ĤS + ([A] + [C]) M̂(B̂k)), B̂0 = 0̄, k = 1, 2, . . . (9)

This process ends when the equations residuals become less than a previously defined value ε. For
solving linear systems of equations [C]x̄ = ȳ , use is made of the incomplete Cholesky expansion
method in combination with the conjugate gradient method [5].

6 Magnet systems modeling

The above mentioned method of volume integral equations was tested for different magnet systems
modeling. Here we give a single instance: the computer model of the BOOSTER quadrupole magnet
of the NICA project with the help of the generator 3dfemmesh is given Fig. 1a. The yoke field
saturation is presented in Fig. 1b. The results shown in Fig. 1c point to the very good agreement of the
present method and of the famous code TOSCA [1] based on solving partial differential equations.

Figure 1. a. – FEM discretization of BOOSTER quadrupole magnet volume; b. – yoke field saturation;
c. – comparison of the outputs of the present method and TOSCA
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