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Motivated by arguments of the nuclear core-layer model formulated in [S.I. Bastrukov, J.A. Maruhn, Z.
Phys. A 335 (1990) 139], the macroscopic excitation mechanism of the electric pygmy dipole resonance
(PDR) is considered as owing its origin to perturbation-induced effective decomposition of a nucleus into
two spherical domains–undisturbed inner region treated as a static core and dynamical layer undergoing
elastic shear vibrations. The elastic restoring force is central to the excitation mechanism under consider-
ation and has the same physical meaning as in macroscopic model of nuclear giant resonances involving
distortions of the Fermi-sphere providing unified description of isoscalar giant electric and magnetic res-
onances of multipole degree � � 2 in terms of two fundamental vibrational modes in an elastic sphere,
to wit, as spheroidal (electric) and torsional (magnetic) modes of shear elastic oscillations of the nodeless
field of material displacements excited in the entire nucleus volume. In the present Letter focus is placed
on the emergence of dipole overtone in the frequency spectrum of spheroidal elastic vibrations as Gold-
stone soft mode. To emphasis this feature of dipole resonant excitation imprinted in the core-layer model
we regain spectral equation for the frequency of spheroidal elastic vibrations trapped in the finite-depth
layer, derived in the above paper, but using canonical equation of an elastic continuous medium. The
obtained analytic equations for the frequency of dipole vibrational state in question and its excitation
strength lead to the following estimates for the PDR energy centroid EPDR(E1) = [31 ± 1]A−1/3 MeV and
the total excitation probability BPDR(E1) = [1.85 ± 0.05]10−3 Z 2 A−2/3e2 fm2 throughout the nuclear chart
exhibiting fundamental character of this soft dipole mode of nuclear resonant response.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

It is generally recognized today that macroscopic behavior of a
nucleus at excitation of giant resonances of multipole degree � � 2
located lower than the compressional giant monopole and the gi-
ant dipole resonances bears strong resemblance to elastic shear
(non-compressional) oscillations of a solid globe. Such an under-
standing, prompted long ago by work of Bertsch [1], has come into
existence during the past three decades as a result of numerous
investigations clearly indicating that macroscopic description of
giant-resonant nuclear response in terms of shear oscillations of an
elastic sphere provides proper account of experimentally observed
size effect—smooth variation of integral parameters of isoscalar gi-
ant resonances throughout the nuclear chart, such as centroid of
energy, spread width and total excitation strength (e.g. [2] and ref-
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erences therein). This feature is generally thought of as exhibiting
fundamental character of nuclear giant-resonant response [3]. In
this latter context, a great deal of current interest centers on the
electric pigmy dipole resonance (PDR) which is observed by the
nuclear resonance fluorescence (NRF) technique as a concentration
of electric dipole strength near the neutron threshold (e.g., [4–16]
and references therein), that is, in the energy domain where nu-
clear resonance-like excitations exhibit features generic to shear
oscillations of an elastic sphere.

It is the subject of the present Letter to investigate elastody-
namic excitation mechanism of the electric PDR, that is, as owing
its origin to elasticity of nuclear medium. In so doing we focus on
physical arguments and technical details expounded in Ref. [17] in
which the effect of perturbation-induced effective decomposition
of nucleus into two spherical domains—undisturbed by perturba-
tion inner region, treated as a static core, and peripheral dynami-
cal layer set in non-rotational elastic oscillations has been studied
within the framework of macroscopic model of giant resonances
involving distortions of the Fermi-sphere (e.g., [18–25]). One of
the prime purposes of work [17] was to formulate mathematically
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trackable procedure of evaluating a fractional part of the nucleus
volume involved in the elastic shear vibrations detected as gi-
ant isoscalar E� resonances. Emphasis was laid on the core-layer
model predictions regarding the energies of quadrupole and oc-
tupole overtones of shear elastic oscillations. By varying the depth
of layer, which serves as an input parameter of the model, it was
found that the deeper layer the higher is the excitation energy. In
this Letter we focus on dipole overtone of the layer-against-core
elastic oscillations and accentuate a macroscopic mechanism of
emergence of dipole vibrational excitation imprinted in the core-
layer model as Goldstone soft vibrational mode. The most conspic-
uous feature of such a mode is that it can exist then and only then
when elastic oscillations turn out trapped in the peripheral layer
of finite depth, not in the entire volume of the nucleus.

2. Basic equations

In the model under consideration a nucleus is thought of as an
ultra fine spherical piece of elastic continuous medium condensed
to the normal nuclear density ρ and uniform distribution of the
electric charge density ρe . The nucleus response to an external
perturbation (induced by inelastically scattered electrons or elasti-
cally scattered gamma-quanta in NFR measurements) is described
by the field of material displacements ui which serves as a basic
dynamical variable of intrinsic collective fluctuations of nucleons.
For non-compression fluctuations, δρ = −ρ∇kuk = 0, the equation
describing elastic dynamics of nuclear material in the nucleus vol-
ume reads

ρüi = ∇kσik, σik = 2μuik, uik = 1

2
(∇iuk + ∇kui),

ukk = ∇kuk = 0, (1)

where constant μ is the shear modulus relating applied shear
stress σik to resulting shear stain uik , the Hooke’s law of elastic
deformation. The conservation of energy is described by equation

∂

∂t

∫
ρu̇2

2
dV = −2

∫
μuiku̇ik dV . (2)

The fluctuating fields of material displacement ui and shear de-
formations uik can be conveniently represented in the following
separable form:

ui(r, t) = ai(r)α(t),

uik = aikα(t), aik = 1

2
[∇iak + ∇kai], (3)

where ai(r) stands for the time-independent field of instantaneous
displacements and amplitude α(t) defines time evolution of intrin-
sic elastic distortions. Following the line of argument of Refs. [2]
and [17], we focus on perturbation-induced shear fluctuations of
the nucleus material in which the field of displacement obeys the
vector Laplace equation

∇2u(r, t) = 0, ∇ · u(r, t) = 0, (4)

which is characteristic equation of the quasi-static regime of elastic
oscillations thought of as long wavelength limit of standing-wave
regime governed by the Helmholtz equation, ∇2u + k2u = 0, be-
cause in the limit of long wavelength λ → ∞ (and, hence, k =
2π/λ → 0) this latter equation is reduced to (4) [2]. Two funda-
mental solutions of (4), given by the even parity poloidal and odd
parity toroidal solenoidal fields of fundamental basis [26], built
on the general solution to the scalar Laplace equation ∇2χ(r) = 0
laid the ground for generally accepted Lamb’s classification of vi-
brational eigenstates in an elastic sphere. Namely, the even-parity
spheroidal and odd-parity torsional vibrational states. In what fol-
lows we confine our discussion to spheroidal vibrational mode in
Fig. 1. The irrotational fields of material displacements picturing distribution of
elastic stresses whose emergence is attributed to resistivity of circular orbits of sin-
gle-particle Fermi-motion in the mean field of shell model to perturbation-induced
distortions of their equilibrium shapes. The picture visualizes quadrupole (left) and
octupole (right) overtones of nodeless elastic oscillations excited in the entire nu-
cleus volume and detected as isoscalar E2 and E3 giant resonances.

Fig. 2. Anisotropic distortions of single-particle orbitals forming the nuclear Fer-
mi-sphere in momentum space and corresponding squeeze-spread distortions of
the nuclear mean field potential in the fast process of non-compressional elastic
vibrational response of nucleus detected as isoscalar giant resonances. The most
conspicuous feature of this response is that generic to the ground state the shell’s
order in filling of the mean field potential by single-particles states and original
nodal structure of wave functions of single-particle states is preserved.

which the poloidal field of instantaneous material displacement is
irrotational and can be represented, therefore, as follows [2]:

as(r) = ∇χ(r), χ(r) = f�(r)P�(cos θ),

f�(r) = [
A�r� +B�r−(�+1)

]
. (5)

The structure of this field is identical to that utilized in hydrody-
namical model assuming irrotational flow of incompressible fluid
that was in the past a fairly successful idea adopted to describe
other modes of very collective and energetic nuclear excitations.
Also, it is noteworthy that the radial function f�(r) has no nodes,
from what the term nodeless oscillations is derived. The arbitrary
constants A� and B� are eliminated from boundary conditions mo-
tivated by physical arguments.

In Fig. 1, the incessant Fermi-motion of independent nuclear
quasi-particles in the mean field potential of shell model is vi-
sualized by regularly ordered circular orbits which serve as basic
explanatory devices of the macroscopic model under considera-
tion. The fast process of nuclear resonant excitations is associated
with release of short-time electromagnetic load resulting in quasi-
static oscillations of orbits about their equilibrium shapes under
the action of restoring force of elastic shear stress, as pictured in
this figure for quadrupole and octupole nodeless spheroidal elastic
shear vibrations.

Fig. 2 illustrates theoretical treatment of quasi-static regime
of nodeless elastic shear vibrations from the viewpoint of the
distorted Fermi-sphere model and canonical shell-model picture.
The most prominent feature of non-compressional resonant nu-
clear response is that the original Fermi-distribution of nucleon
quasi-particles in the momentum space and original shell-ordered
sequence of discrete states of Fermi-motion of independent quasi-
particles in the potential of nuclear mean field are not affected.
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The frequency ω of quasi-static regime of nodeless spheroidal
oscillations is uniquely computed by the Rayleigh’s energy varia-
tional method (see, for details, [2]) which leads to the equation for
temporal amplitude α(t) having the form of equation of harmonic
oscillations

dE
dt

= 0, E = Mα̇2

2
+ Kα2

2
,

→ α̈(t) + ω2α(t) = 0, ω2 = K

M
, (6)

with the inertia M and stiffness K given by

M =
∫

ρai(r)ai(r)dV, K = 2
∫

μaik(r)aik(r)dV . (7)

The experimentally measured energy centroid of isoscalar electric
resonance E(E�) is identified with the energy of �-pole spheroidal
oscillations with frequency ωs(�); the link between these two
quantities is given by standard quantum-mechanical equation

E(E�) = h̄ωs(�), ωs(�) =
√

K (�)

M(�)
. (8)

Bearing in mind that non-compressional oscillations of an ultra
fine electrically charged spherical mass of nuclear medium are ac-
companied by oscillations of the charge-current density δj = ρeu̇s

(where u̇s stands for the rate of displacements in spheroidal mode
of nodeless elastic oscillations) and that the integral characteris-
tics of corresponding vibrational states are the electric moments
of charge-current density M j(E�), the electric excitation strength
of the �-pole nuclear response to the long-wavelength electromag-
netic field can be evaluated by standard equation of the macro-
scopic electrodynamics of continuous media

B(E�) = (2� + 1)
〈∣∣M j(E�)

∣∣2〉
,

M j(E�) = i

ω(� + 1)

∫
δj · ∇r� P�(θ)dV . (9)

The last two formulae provide computational basis for physical
interpretation of nuclear giant-resonant excitations in continuum-
mechanical terms of nodeless shear vibrations of charged elastic
sphere.

3. Nuclear response by spheroidal elastic oscillations trapped
in the peripheral finite-depth layer

To evaluate a fractional part of the nucleus volume involved
in elastic shear vibrations, detected as giant isoscalar E� reso-
nances, in [17] the nucleus response has been considered in the
core-layer model presuming the perturbation-induced decomposi-
tion of nucleus into effective static core and dynamical layer un-
dergoing nodeless shear oscillations which are controlled by elas-
tic restoring force. The term effective means that two-component,
core-layer, picture emerges solely in the process of excitation, not
in the ground state, so that the very notion of core should be
thought, thereby, of as reflecting the dynamically inert central re-
gion of nucleus unaffected by perturbation and remaining at rest.
To get better understanding dynamical peculiarities of elastody-
namic mechanism of giant-resonant excitations, an analytic calcu-
lation of spectral equation for the frequency has been performed
in the approximation of sharp edge and homogeneous material
parameters, to wit, the density ρ and the shear modulus μ of
nuclear medium. The depth of dynamical layer involved in elas-
tic vibrations can be conveniently represented as R = R(1 − x),
where x = Rc/R , is the basic parameter of the core-layer model
regulating dependence of the energy and the excitation strength of
vibrational state upon the layer depth. The obtained in [17] field of
oscillating non-rotational material displacements in the peripheral
nuclear layer can be represented as follows

us(r, t) = as(r)α(t),

as = ∇χ(r), χ(r) = [
A�r� +B�r−(�+1)

]
P�(cos θ), (10)

A� = N�

�(� + 1)
, B� = − N�

�(� + 1)
R2�+1

c ,

N� = R�+3

R2�+1 − R2�+1
c

, (11)

where constants A� and B� have been eliminated from bound-
ary conditions of impenetrability of perturbation in the core,
ur |r=Rc = 0, and compatibility of the rate of displacements with
the rate of spheroidal distortions of the nucleus surface:
u̇|r=R = Ṙ(t), where R(t) = R[1 + α�(t)P�(cos θ)]. The inertia
Ms(�, x) and the stiffens Ks(�, x) computed as functions of mul-
tipole degree � and parameter x are given by

Ms(�, x) = 4π R5ρ

�(2� + 1)(1 − x2�+1)

[
1 + �

(� + 1)
x2�+1

]
, (12)

Ks(�, x) = 8π R3μ

(1 − x2�+1)2

[
(� − 1)

�

(
1 − x2�−1)

+ (� + 2)

(� + 1)
x2�−1(1 − x2�+3)]. (13)

The resultant frequency spectrum ωs(�, x) reads

ω2
s (�, x)

= ω2
0

{
2(2� + 1)

(1 − x2�+1)

×
[

(�2 − 1)(1 − x2�−1) + �(� + 2)x2�−1(1 − x2�+3)

(� + 1) + �x2x+1

]}
. (14)

It follows when the core radius Rc → 0 and, hence parameter, x =
(Rc/R) → 0, a limiting case when the entire volume of nucleus
sets in oscillations, the last spectral formula takes the form

ωs(�) = ω0
[
2(2� + 1)(� − 1)

]1/2
, ω0 = ct

R
(15)

showing that the lowest overtone is of quadrupole, � = 2, degree;
ct = [μ/ρ]1/2 is the speed of transverse shear wave in the bulk nu-
clear matter. However, when x �= 0 the lowest overtone, as is easily
seen, is of dipole, � = 1, degree. In this latter case a peripheral
layer executes elastic differentially translational shear oscillations
relative to static core, as pictured in Fig. 3.

4. Dipole soft mode of elastic layer-against-core shear
oscillations

It is appropriate for the former to discuss the obtained analytic
formulae for the energy and excitation strength of dipole overtone
of nodeless elastic layer-against-core oscillations by highlighting
the emergence of dipole overtone as Goldstone soft mode. The
mass parameter and stiffness of dipole differentially translational
oscillations of the finite-depth layer against static core have the
form

Ms(� = 1, x) = 4π R5ρ

3

(1 + x3/2)

(1 − x3)
,

Ks(� = 1, x) = 12π R3μ
x(1 − x5)

(1 − x3)2
(16)

and corresponding energy of dipole vibrational state is given by
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Fig. 3. Artist view of nuclear elastic distortions in suggested macroscopic mechanism
of isoscalar electric pygmy dipole resonance as elastic dipole soft mode. The excita-
tion process is thought of as an effective decomposition of nucleus, induced by elas-
tically scattered gamma-quanta of NRF technique, into two domains—undisturbed
by perturbation internal spherical region treated, thereby, as a static core and pe-
ripheral dynamic layer undergoing differentially translational oscillations driven by
restoring force of elastic shear stresses. The emergence of elastic force is attributed
to resistivity to disruption of peripheral circular periodic orbit of incessant Fermi–
motion of independent quasi-particles in the nuclear mean field of shell model.

E(E1, x) = h̄ωs(� = 1, x),

ωs(� = 1, x) = ω0

[
9x(1 − x5)

(1 − x3)(1 + x3/2)

]1/2

. (17)

One sees again that when, x = 0, the coefficient of vibrational
rigidity vanishes: Ks(� = 1, x = 0) = 0 and, as follows from Hamil-
tonian of oscillator, the total absorbed energy goes in kinetic en-
ergy of the center-of-mass motion. This simple argument shows
that the dipole excitation in question can exist as vibrational mode
when perturbation sets in differentially translational fluctuations
solely peripheral nuclear layer of finite depth leaving the central
spherical region of nucleus unaltered. Such behavior is typical for
the Goldstone soft modes whose most conspicuous feature is that
the mode disappears (the frequency turns into zero), when one
of parameters of vibrating system tends to zero: ω(� = 1, x) → 0,
when x → 0.

The total dipole strength of electromagnetic response computed
as squared dipole moment of the charge-current density fluctua-
tions excited in the surface finite-depth layer is given by

B(E1, x) = 3
〈∣∣M j(E1)

∣∣〉
= ρ̃2

e

ρ

h̄R3

2ω0

[
(1 − x3)3

x(1 − x5)(1 + x3/2)

]1/2

. (18)

By ρ̃e we denote the charge density of the peripheral layer which
in the model of homogeneous layer can be defined as ρ̃e = γρe

where ρe = (Z/A)en stands for the average charge density of nu-
cleus as a whole with n being the average particle density of nucle-
ons. Physically, the parameter of fractional charge density, γ < 1,
takes into account the neutron-dominated content of nuclear mat-
ter in the surface layer of nucleus.

The considered macroscopic mechanism of emergence of dipole
vibrational mode can be regarded as having universal character
(generic to all stable nuclei of nuclear chart) if the input pa-
rameters of the model, namely, the speed of transverse shear
wave ct , geometrical parameter x, and fractional charge density,
γ would have one and the same values for all nuclei. If so,
from the obtained equations for the energy centroid and excita-
tion strength it follows that the integral characteristics smoothly
vary with mass number A and this variation is given by typi-
cal for the giant resonances estimates: E(E1, x) = κE(x)A−1/3 and
B(E1, x) = κB(x)Z 2 A−4/3, respectively, where κE (x) and κB(x) are
constants and the link between atomic number Z and mass num-
ber A is given by the well-known empirical formula: Z = A[2 +
0.015A2/3]−1. Bearing this in mind (and that the elastodynamic ex-
citation mechanism provide proper account of isoscalar giant res-
Fig. 4. Theoretically computed energy of electric dipole soft mode of elastic transla-
tional oscillations of layer against core in juxtaposition with data on energy centroid
of the low-energy E1 strength taken from [6–16].

Fig. 5. The strength of low-energy E1 electromagnetic nuclear resonant response.
Symbols—data of works [6–16] and line—is E1 excitation strength of the dipole elec-
tric soft mode of elastic oscillations computed as integral electric dipole moment of
charge-density current in this vibration state.

onances with � � 2, as discussed below) it is tempting to consider
the available experimental data on the low-energy electric PDR in
the context of above predictions of the core-layer model for the
energy and excitation strength of the dipole soft mode. By varying
parameter x so as to attain best agreement with data on the energy
centroid of PDR as a function of mass number, we get x = 0.33.
Having fixed this parameter and applying the obtained formula
for the excitation strength to data on total excitation strength one
finds that the fractional charge density is given by γ = 6.6 × 10−2.
The net outcome is summarized by the following estimates

EPDR(E1) = [31 ± 1]A−1/3 MeV,

BPDR(E1) = [1.85 ± 0.05]10−3 Z 2 A−2/3e2 fm2, (19)

showing that the electric PDR is fundamental resonant mode of
nuclear response generic to all stable nuclei of nuclear chart, as
it is demonstrated in Figs. 4 and 5 where theoretically computed
energy centroid and total excitation strength of elastic dipole soft
vibrational mode are plotted in juxtaposition with experimental
data for the electric PDR borrowed form [6–16].

A special comment that deserves to be made is that the dif-
ference between proposed elastodynamic excitation mechanism of
the electric PDR implying the isoscalar nature of this soft mode
and the hydrodynamic mechanism lying at the base of isovector
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Fig. 6. Artist view of nuclear elastic distortions in magnetic dipole resonant (MDR) response of nuclei which is described as caused by effective decomposition of nucleus,
induced by elastically scattered gamma-quanta of NRF technique, into two regions—undisturbed by perturbation static core and peripheral dynamic layer undergoing torsional,
differentially rotational, oscillations driven restoring force of elastic shear stresses. One sees that theoretical predictions of the core-layer model [36,37] for the energy centroid,
E(MDR) = 41A−1/3, MeV and excitation strength, B(MDR) = 8.5 × 10−2 Z 2 A−2/3μ2

N of magnetic dipole resonance adequately reproduce experimental data [38] throughout

the nuclear chart.
macroscopic model [34,35] from the standpoint of which the elec-
tric PDR is thought of as low-frequency counterpart of giant dipole
resonance. In calculations reported in [34] the low-energy dipole
resonant mode arises as a solution of fairly sophisticated equations
describing oscillations of relative neutron–proton density driven by
restoring force defined as gradient of symmetry energy and, thus,
implying the isovector type and compressional character of mate-
rial oscillations. In the meantime, numerous theoretical investiga-
tions of nuclear giant resonances by macroscopic methods of the
theory of material continua, developed over the past three decades,
unambiguously indicate that excitation of compression nuclear vi-
brations demands much more energy of electromagnetic pertur-
bation than that goes to excitation of the electric pygmy dipole
resonance.

5. Discussion and summary

The line of argument presented above shows that the electric
PDR emerges as a soft dipole mode of elastic shear oscillations
of irrotational flow which turn out to be confined in the finite-
depth surface layer. These two signatures are the main features
distinguishing the low-energy electric PDR from the electric toroid-
dipole resonant (TDR) mode centered at ETDR(E1) ∼ 70A−1/3 MeV
[27–33]. The characteristic peculiarities of TDR mode (considered
in [27] on the same physical footing, that is, as driven by restoring
force of shear elastic distortions) is that in this latter case a nu-
cleus responds by oscillations of rotational, i.e., vortical, flow with
the torus-like shape of the flow lines and such oscillations are ex-
cited in the whole volume of nucleus.

It is noteworthy that based on arguments similar to expanded
above, in Refs. [36,37] it was shown that magnetic dipole res-
onance (MDR), experimentally detected by NRF technique as
well [38], can also be interpreted as a result of perturbation-
induced core-layer decomposition of nucleus, but accompanied by
differentially rotational, torsional, elastic oscillations of peripheral
layer relative to static core, as pictured in Fig. 6. To this end, it
worth emphasizing that macroscopic elastodynamic treatment of
low-frequency dipole nuclear resonant excitations provides a re-
markable way of unifying understanding of the electric pygmy
dipole resonance and magnetic dipole resonance as soft modes of
differentially translational (PDR) and differentially rotational (MDR)
elastic oscillations of the finite-depth layer against static core, re-
spectively, the oscillations driven by one and the same restoring
force of shear deformations. This point of view is strengthened by
unified elastodynamic interpretation of isoscalar electric E� and
magnetic M� giant resonances of multipole degree � � 2 in terms
of two fundamental, spheroidal and torsional, vibrational modes
in a viscoelastic sphere, excited in the entire nucleus volume:
the electric giant resonances are treated as even parity spheroidal
(shake) mode of nodeless elastic shear oscillations with frequency
ωs(�) of irrotational vector field of material displacements and the
magnetic giant resonances as odd-parity torsional (twist) mode of
nodeless shear oscillations with frequency ωt(�) of differentially
rotational vector field of material displacements, respectively, as
pictured in Fig. 7.

The predictions of the nuclear solid-globe model regarding en-
ergies E = h̄ω and spread widths Γ = h̄τ−1 of electric E� and
magnetic M� giant resonances of multipole degree � � 2 treated
in terms of above spheroidal and torsional nodeless shear vibra-
tions of a viscoelastic sphere are given by the following spectral
equations [2]

E(E�) = h̄ω0
[
2(2� + 1)(� − 1)

]1/2
,

Γ (E�) = h̄

τ0

[
(2� + 1)(� − 1)

]
, (20)

E(M�) = h̄ω0
[
(2� + 3)(� − 1)

]1/2
,

Γ (M�) = h̄ [
(2� + 3)(� − 1)

]
, (21)
2τ0
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Fig. 7. Intrinsic distortions in the spheroidal and torsional modes of global elastic shear vibrations of nucleus detected as giant electric and magnetic resonances. Energy
centroid of electric E� and magnetic M� resonances of multipole degree � � 2 as a function of mass number A computed with ω0 = ct/R where ct = [μ/ρ]1/2 is the speed
of transverse wave of elastic shear and R = r0 A1/3 is the nucleus radius.
E ∼ ω0 = ct

R
=

√
μ/ρ

R
∼ A−1/3,

Γ ∼ τ−1
0 = η

ρR2
∼ A−2/3, (22)

where ω0 and τ0 are the natural units of frequency and life-
time of shear vibrations restored by bulk force of elastic stresses
and damped by friction force of viscous stresses, the quantities
carrying information about shear modulus μ and shear viscos-
ity η of nuclear matter. The obtaining of such information has
been and still is among the main purposes of macroscopic mod-
eling of nuclear giant resonance in terms of vibrations of an ul-
tra small mass of nuclear continuous medium. From identification
of theoretically computed energy of spheroidal quadrupole vibra-
tional state with experimental energy of giant E2 resonance, taken
from [39], it follows μ 	 4 × 1033 dyn cm−2. The fact that predic-
tions of the model fairly accurately match the data on E3 (from
[40]) and M2 (from [41]) with no use of any adjustable constants,
as one can see in Fig. 7, lends strong support to elastodynamical
macroscopic mechanism of excitation of isoscalar giant resonances.
Also it seems appropriate to add that a similar line of argument
has been utilized to extract the shear viscosity η of nuclear matter
from systematic data on spread width of giant resonances and the
work of Hasse [42] is among the first to point out that such pro-
cedure leads to η 	 3 × 1011 dyn s cm−2 (see, for detail, [2]). These
latter inferences of nuclear physics regarding transport coefficients
of shear elasticity μ and shear viscosity η of nuclear material is of
particular interest for current investigations on asteroseismology of
neutron stars, an actively developing domain of pulsar astrophysics
studying quake-induced seismic vibrations of neutron stars. Such
vibrations are detected as quasi-periodic oscillations of electromag-
netic emission from these cosmic nuclear matter objects exhibiting
similar elastodynamical pattern of their vibrational behavior (e.g.,
[43–45] and references therein).
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