19,463 research outputs found

    Photographic collections at National Museums Scotland – a review of the past quarter century

    Get PDF

    Projective Representations of the Inhomogeneous Hamilton Group: Noninertial Symmetry in Quantum Mechanics

    Full text link
    Symmetries in quantum mechanics are realized by the projective representations of the Lie group as physical states are defined only up to a phase. A cornerstone theorem shows that these representations are equivalent to the unitary representations of the central extension of the group. The formulation of the inertial states of special relativistic quantum mechanics as the projective representations of the inhomogeneous Lorentz group, and its nonrelativistic limit in terms of the Galilei group, are fundamental examples. Interestingly, neither of these symmetries includes the Weyl-Heisenberg group; the hermitian representations of its algebra are the Heisenberg commutation relations that are a foundation of quantum mechanics. The Weyl-Heisenberg group is a one dimensional central extension of the abelian group and its unitary representations are therefore a particular projective representation of the abelian group of translations on phase space. A theorem involving the automorphism group shows that the maximal symmetry that leaves invariant the Heisenberg commutation relations are essentially projective representations of the inhomogeneous symplectic group. In the nonrelativistic domain, we must also have invariance of Newtonian time. This reduces the symmetry group to the inhomogeneous Hamilton group that is a local noninertial symmetry of Hamilton's equations. The projective representations of these groups are calculated using the Mackey theorems for the general case of a nonabelian normal subgroup

    Beveridge-Nelson Decomposition with Markov Switching

    Get PDF
    This paper considers Beveridge-Nelson decomposition in a context where the permanent and transitory components both follow a Markov switching process. Our approach incorporates Markov switching into a single source of error state-space framework, allowing business cycle asymmetries and regime switches in the long run multiplier.Beveridge-Nelson decomposition, Markov switching, Single source of error state space models

    Autonomous spacecraft maintenance study group

    Get PDF
    A plan to incorporate autonomous spacecraft maintenance (ASM) capabilities into Air Force spacecraft by 1989 is outlined. It includes the successful operation of the spacecraft without ground operator intervention for extended periods of time. Mechanisms, along with a fault tolerant data processing system (including a nonvolatile backup memory) and an autonomous navigation capability, are needed to replace the routine servicing that is presently performed by the ground system. The state of the art fault handling capabilities of various spacecraft and computers are described, and a set conceptual design requirements needed to achieve ASM is established. Implementations for near term technology development needed for an ASM proof of concept demonstration by 1985, and a research agenda addressing long range academic research for an advanced ASM system for 1990s are established

    Equivalence theory for density estimation, Poisson processes and Gaussian white noise with drift

    Get PDF
    This paper establishes the global asymptotic equivalence between a Poisson process with variable intensity and white noise with drift under sharp smoothness conditions on the unknown function. This equivalence is also extended to density estimation models by Poissonization. The asymptotic equivalences are established by constructing explicit equivalence mappings. The impact of such asymptotic equivalence results is that an investigation in one of these nonparametric models automatically yields asymptotically analogous results in the other models.Comment: Published at http://dx.doi.org/10.1214/009053604000000012 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore