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1. Introduction

Modeling the behavior of aggregate output has always been an important goal for

macroeconomists, who frequently want to study the characteristics of trends and cycles

in the economy. Researchers have often used unobserved component (UC) models in

this endeavour, specifying a permanent component to represent trend and a transitory

component to represent the cycle. These UC models have often been augmented with

Markov switching (MS) processes, so as to incorporate asymmetries associated with

business cycles or other types of macroeconomic nonlinearities. See Kim and Nelson

(1999), Luginbuhl and De Vos (1999), Kim and Murray (2002) and Kim et al. (2005)

for examples. This paper considers a new UC class of MS model that is based on a

Beveridge-Nelson (BN) decomposition.

UC models are popular because they allow the direct specification of the permanent

and transitory components in state-space form, and they can be estimated quite easily,

using maximum likelihood and the Kalman filter. The permanent and transitory compo-

nents are usually assumed to be driven by independent innovations, but recent work has

relaxed this assumption, and allowed these innovations to be correlated. The Beveridge-

Nelson decomposition is a very special case of UC modelling in which the innovations for

permanent and transitory components are perfectly correlated. This property of perfect

correlation is supported by the empirical trend and cycle decomposition of US real GDP

undertaken by Morley et al (2003), and it is consistent with intuition that shocks to an

economy will affect both trend and cycle. BN decomposition has been popular in the

applied macroeconomic literature ever since Beveridge and Nelson first suggested it in

1982, but an estimation difficulty associated with approximating an infinite forecasting

horizon has sometimes reduced its appeal.

Recent work by Anderson et al (2006) has simplified the computation of the BN com-

ponents by working with a single source of error (SSOE) state-space approach. Here,

we extend BN decomposition in a way that accounts for business cycle asymmetries

by introducing a new class of MS model that is built around a SSOE specification.

This model (henceforth called an MS-BN model) incorporates an MS process into both

permanent and transitory components, thus enabling both short run and long run pa-
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rameters to switch between regimes. The SSOE framework ensures that the embedded

permanent and transitory components turn out to be BN components.

MS-BNmodels have only a few precedents in the literature. Shami and Forbes (2000)

use a SSOE state-space approach to estimate a model in which the drift follows a MS

process, but they do not interpret their resulting trend and cycle as BN components.

More recently, Chen and Tsay (2006) have investigated business cycle asymmetry within

a BN decomposition by incorporating a two-state MS process into their permanent

component. Like Shami and Forbes (2000), their transitory component is not regime

dependent. Further, Chen and Tsay’s (2006) estimation technique differs, in that they

use the Newbold (1990) procedure in conjunction with the Hamilton (1989) filter.

MS models depend on using hidden Markov chains as latent processes for transiting

from one regime to another, and Hamilton’s (1989) filter provides a maximum likelihood

based algorithm for estimating the probabilities associated with being in each MS regime

at each time. Snyder (1985) provides an algorithm that assumes that the innovations

of the unobserved state components in a linear setting are perfectly correlated. We

estimate our MS-BN models using a maximum likelihood approach, but we replace the

standard Kalman filter used in Kim’s (1994) approximation procedure for estimating

MS state-space models, with Snyder’s (1985) perfectly correlated version.

In the next section we introduce a general SSOE state-space model with Markov

switching, and discuss some details associated with estimating these models. This sec-

tion also outlines the special case of a two-state MS-BN ARIMA(2, 1, 2) specification,

that is potentially useful for studying trends and cycles in macroeconomic time series.

We report on the application of this model to study quarterly real GNP in the USA in

Section 3, and then provide a brief conclusion in Section 4.

2. SSOE state-space models with Markov-switching (MS)

2.1. Model specification

The single source of error state-space model for an observable variable yt is

yt = β0xt−1 + et (2.1a)
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with

xt = Fxt−1 + αet, (2.1b)

where (2.1a) and (2.1b) respectively specify measurement and state transition equations.

The k vector xt contains the unobserved components at the beginning of period t, α is a

fixed k vector of parameters, et is an i.i.d. N
¡
0, σ2

¢
innovation, β is a fixed k vector, and

F is a fixed k×k transition matrix. Often β and F depend on time invariant parameters.
The distinguishing feature of this specification is that both equations are driven by the

same innovation, and models with this feature are sometimes called "innovations state

space models" (see, eg Hannan and Deistler, (1988)). Snyder (1985) adapts the Kalman

filter associated with the maximum likelihood estimation of the parameters in (2.1) to

explicitly account for this structure in innovations.

Anderson et al (2006) point out that when ∆yt has an ARMA representation, then

the perfect correlation between the errors in (2.1) can be exploited to perform a BN

decomposition of the variable yt into its BN trend τ t and cycle ct. This is done by

including τ t and ct in xt, and appropriately specifying the matrix F. It turns out that

the coefficient of α in the trend equation conveniently measures the long run multiplier

(i.e. the Campbell-Mankiw (1987) measure of persistence) in this setting.

The addition of an MS process to a SSOE state-space model leads to measurement

and state transition equations given by

yt = β0Stxt−1 + et,St (2.2a)

and

xt = FStxt−1 + αStet,St , (2.2b)

in which St is an unobserved MS variable that affects both parameters and innovations.

For an M -regime first order Markov process, St can take just one of M discrete values

at time t, and transition between regimes is governed by⎛⎜⎜⎜⎜⎜⎝
p11 p12 ... p1M

p21 p22 ... p2M
...

...
. . .

...

pM1 pM2 ... pMM

⎞⎟⎟⎟⎟⎟⎠ , (2.2c)
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where pij = Pr(St = j|St−1 = i) and
MP
j=1

pij = 1 for all i. See Goldfeld and Quandt

(1973) and Hamilton (1989) for more details on Markov switching. The k vector xt in

(2.2) contains the unobserved component variables as before, and the single innovation

et,St now follows a distribution specified by et,St ∼ N
¡
0, σ2St

¢
, in which the variance

changes with regime. The parameters in αSt , βSt and FSt are random variables that

depend on the unobserved MS state variable St. Like the standard SSOE specification

in (2.1), the MS-SSOE specification can be used to perform a BN decomposition, and

this potential use leads to our classification of the model specified by (2.2) as an MS-BN

model.

2.2. Estimation

The estimation of (2.2) is similar to the estimation of (2.1) in that both involve

the calculation of forecasts xt|t−1 of the unobserved components xt, conditional on in-

formation available at time t − 1. However, the estimation of (2.1) just involves the
calculation of xt|t−1 = E(xt|eyt−1) with eyt−1 = (yt−1, yt−2, ..., y1), whereas the estima-

tion of (2.2) involves the calculation of M2 forecasts (one for each combination of i

and j) of x(i,j)t|t−1 = E(xt|eyt−1, St = j, St−1 = i) for each t, which is considerably more

complicated.

Kim (1994) outlines an algorithm that is useful for estimating a Markov switching

specification that differs from (2.2) in that his error terms are independent (rather than

perfectly correlated). His algorithm involves calculatingM2 forecasts x(i,j)t|t−1 at each time

t, corresponding to every possible combination of i and j, and then using the Kalman

filter to update each x
(i,j)
t|t−1 to obtain x

(i,j)
t|t when yt becomes available. Kim’s algorithm

also updates P (i,j)t|t , the mean squared error matrix of xt conditional on eyt.While Kim’s
algorithm is not directly applicable given that it assumes independent innovations, we

adapt it using Snyder’s (1985) filtering algorithm for perfectly correlated innovations to

obtain

x
(i,j)
t|t−1 = Fjx

i
t−1|t−1,

P
(i,j)
t|t−1 = FjP

i
t−1|t−1F

0
j + αjσ

2
jα
0
j,
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e
(i,j)
t|t−1 = yt − β0jx

i
t−1|t−1,

v
(i,j)
t|t−1 = βjP

i
t−1|t−1β

0
j + σ2j ,

K
(i,j)
t|t−1 = (FjP

i
t−1|t−1βj + αjσ

2
j )(v

(i,j)
t|t−1)

−1
,

x
(i,j)
t|t = x

(i,j)
t|t−1 +K

(i,j)
t|t−1e

(i,j)
t|t−1,

and

P
(i,j)
t|t = P

(i,j)
t|t−1 −K

(i,j)
t|t−1v

(i,j)
t|t−1K

(i,j)
t|t−1

0,

where v
(i,j)
t|t−1 is the conditional variance of the forecast error e

(i,j)
t|t−1, and K

(i,j)
t|t−1 is the

Kalman gain based on information available up to time t− 1 with St−1 = i and St = j.

We follow Kim (1994), and simplify the implementation of this algorithm by col-

lapsing the M2 terms for each of x(i,j)t|t and P
(i,j)
t|t into M terms for each specified by

xjt|t =

PM
i=1 Pr(St = j, St−1 = i|eyt)x(i,j)t|t

Pr(St = j|eyt) (2.3a)

and

P j
t|t =

PM
i=1 Pr(St = j, St−1 = i|eyt)(P (i,j)t|t + (xjt|t − x

(i,j)
t|t )(x

j
t|t − x

(i,j)
t|t ))

Pr(St = j|eyt) , (2.3b)

inferring the conditional probabilities in (2.3a) and (2.3b) from a modified version of

the Hamilton (1989) filter. As discussed in Kim (1994), the equations in (2.3) are

approximations for E(xt | (eyt, St = j)) and E[(xt − x,jt|t) · (xt − x,jt|t)
0 | (eyt,St = j)],

because x
(i,j)
t|t and P

(i,j)
t|t derived from the Kalman filter are only approximations for

E(xt | eyt,St = j, St−1 = i) and E[(xt − x,jt|t) · (xt − x,jt|t)
0|(eyt, St = j, St−1 = i)].

Nevertheless, these approximations work well in practice, and have little influence on

the final estimates.

Estimation of the parameters in (2.1) maximises the log likelihood function given by

LL =
TX
t=1

ln(f(yt|eyt−1)) = TX
t=1

ln(
X
St

X
St−1

f(yt|St, St−1, eyt−1)Pr(St, St−1|eyt−1)),
in which the conditional density f(yt|St, St−1, eyt−1) given by
f(yt|St, St−1, eyt−1)= (2π)−N

2

¯̄̄
v
(i,j)
t|t−1

¯̄̄− 1
2
exp (−1

2
(yt−β0jx(i)t−1|t−1)0v

(i,j)
t|t−1(yt−β0jx

(i)
t−1|t−1))
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is evaluated using the above described filter (along with Kim’s (1994) approximations).

The conditional joint probabilities Pr(St, St−1|eyt−1) are obtained from recursion of the

Hamilton filter.

It is not necessary to smooth the unobserved components x(j)t|t when innovations are

perfectly correlated, as x(j)t|t converges quickly to x
(j)
t|T , (see Harvey (1989) and Harvey and

Koopman (2000)). However, there is still a need to compute the smoothed Pr(St = j|eyT )
to obtain the weighted average unobserved components xt|T at time t. Kim (1994)

provides an appropriate smoothing algorithm, with the resulting components being

xt|T =
MX
j=1

Pr(St = j|eyT )x(j)t|T .
We show below that when ∆yt has an MS-ARMA representation and we define the

permanent and transitory components of yt to be τ t and ct respectively, then (2.2a) to

(2.2c) can lead to the BN decomposition of yt. This decomposition simply involves the

inclusion of τ t, and ct in the component vector xt, and an appropriate specification of

βSt , FSt and αSt.

2.3. SSOE models and the BN decomposition

Anderson et al. (2006) show that if yt is a I(1) variable with a Wold representation

given by ∆yt = µ+ γ (L) εt, where µ is the drift, γ(L) =
θ(L)
φ(L) is an ARMA(p, q) process

with γ(0) = 1 and Σ∞i=0 |γi| < ∞, and εt is an iid
¡
0, σ2

¢
innovation, then the BN

permanent and transitory components are respectively given by

τ t = µ+ τ t−1 + γ (1) εt (2.4a)

and

ct = φ∗p(L)ct + θ∗n(L)εt + (1− γ(1))εt, (2.4b)

where φ∗p(0) = θ∗n(0) = 0, and the orders of φ∗p(L) and θ∗n(L) are p and n with n ≤
max(p − 1, q − 1). The perfectly correlated innovations in (2.4) fit in with the SSOE
framework.
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We incorporate an MS process in the permanent and transitory components by

specifying

τ t = µSt + τ t−1 + αStεt (2.5a)

and

ct = φ∗p,St(L)ct + θ∗n,St(L)εt + (1− αSt)εt, (2.5b)

so that the random parameters µSt , φ
∗
p,St(L), θ

∗
n,St(L), and αSt all depend on St. As

above, the innovation to yt is εt ∼ iid(0, σ2), and this provides the single source of

disturbance. We have restricted σ2 to be constant in this specification, although in

principle σ2 could depend on St without loss of identification. As in (2.4), the perfectly

correlated innovations in (2.5) allow us to write the model in SSOE form.

To illustrate the SSOE state space form of an MS-BN model with business cycle

asymmetries we note that the incorporation of an MS process into the ARIMA(2, 1, 2)

SSOE model leads to a specification with

yt = µSt +
h
1 −φ1,St −φ2,St θ1,St

i
⎡⎢⎢⎢⎢⎢⎣

τ t−1
ct−1
ct−2
εt−1

⎤⎥⎥⎥⎥⎥⎦+ εt (2.6a)

as the measurement equation, and⎡⎢⎢⎢⎢⎢⎣
τ t

ct

ct−1
εt

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

µSt

0

0

0

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 −φ1,St −φ2,St θ1,St

0 1 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
τ t−1
ct−1
ct−2
εt−1

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣

αSt

1− αSt

0

1

⎤⎥⎥⎥⎥⎥⎦ εt (2.6b)
as the transition equation. The parameters µSt , φ1,St , φ2,St , θ1,St and αSt are time in-

variant parameters that depend on the latent MS variable St, and one can use the

two-dimensional version of (2.2c) and allow this variable to take on two possible values

(i.e. St = 1 or St = 2), where the two states represent “contractionary” and “expansion-

ary” regimes in the business cycle. Note that the MA(2) parameters in the underlying

ARMA(2, 2) specification for ∆yt drop out during reparameterisation into SSOE form,

being replaced by the αSt parameters.
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3. Modelling US GNP

This section provides an empirical example of an MS-BN model of the logarithms

of real GNP, detailing the characteristics of this model and its implied BN compo-

nents, and comparing these characteristics with the corresponding linear BN model.

An important motivation for this exercise is to determine whether the incorporation

of Markov-switching leads to an improved ability to capture asymmetries in business

cycles, although we also look at out-of-sample forecast and other aspects of model perfor-

mance. We focus on the MS-BN ARIMA(2,1,2) model shown in equation (2.6), because

researchers often study permanent/transitory decompositions of the linear version of

this model.

Our study is based on quarterly seasonally adjusted data that measures (the natural

logarithm of) real GNP for the USA from 1947:1 to 2003:1. We use the data for 1947:1 to

2000:1 for estimation, and with-hold the remaining twelve observations for out-of-sample

forecast analysis. We estimate the linear BN model first, and retain the estimated

coefficients as starting values for corresponding parameter estimates when estimating

the MS-BN model. Our estimation of the MS-BN model follows the procedure outlined

in Section 2, with the imposition of the condition that µSt=2 = µSt=1 + µ2 with µ2 = 0
so as to identify St = 2 as the expansionary regime. In light of the well known fact

that the likelihood functions of MS models are plagued with numerous local maxima,

we experiment with perturbing our starting values and then take parameter estimates

corresponding to the highest converged likelihood as our maximum likelihood estimates.

Our experiments use starting values of around 0.8 for p11 and 0.9 for p22, since these

values are close to corresponding estimates in other empirical studies.

3.1. The empirical model

Table 1 presents the maximum likelihood parameter estimates. Since µ1 is greater

than zero, it is appropriate to call St = 1 a "slow growth" regime rather than a “re-

cessionary" regime. The long-run multipliers measured by α1 and α2 are greater than

unity, implying that both regimes have strong persistence as measured by Campbell

and Mankiw (1987). This persistence measure predicts the long run increase in output
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resulting from a 1% shock in output in one quarter if the economy was to remain in

that state for ever, and our estimates indicate that persistence for the "fast growth"

regime is stronger than that for the "slow growth" regime. The persistence measure for

the linear model falls between those for the slow and fast regimes. The tendency for the

economy to stay in a fast growth regime (p22) is about the same as that found in other

empirical studies (i.e. 85%), while the tendency to remain in a slow growth regime is

considerably smaller.

The reported R2 statistics (suggested by Stock and Watson (1988)) measure the

proportion of variance in output that can be attributed to variance in the permanent

component, and this ratio declines by about 15 percentage points, once the model

accounts for Markov-switching. This suggests that the MS process plays an important

role in output variation, affecting the transitory component more than the permanent

component. However, the latter still plays the dominant role when it comes to explaining

changes in output.

The top portions of Figure 1 illustrate the smoothed permanent and transitory

components. The transitory component fluctuates considerably, especially when enter-

ing and exiting the "slow growth" regime, but the dominant features are two structural

changes in variance, with the first occurring in about 1960, and the second occurring in

about 1984. This second volatility decline is well documented (see e.g. McConnell and

Perez—Quiros (2000)).

The lower portions of Figure 1 presents the smoothed and filtered probabilities of

being in the "slow growth" regime, together with peak to trough episodes defined by the

NBER. The probabilities of being in the "slow growth" regime for the US peak during

all the recession periods dated by NBER. Although the results are less convincing for

the recessions in the seventies, they are nevertheless higher than the unconditional

probability of 0.28. The probability of being in the "slow growth" regime is only around

0.5 during the 1990-91 recession. This is higher than the unconditional probability of

being in the "slow growth" regime, but this recession was not a typical recession, as

influence from the political uncertainty caused by the first Gulf War played a role here.
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3.2. Model diagnostics

The standard measures of fit reported at the bottom of Table 1 suggest that the MS-

BN model fits the data much better than the BN models (see Table 2), but this is hardly

surprising, given the inherent flexibility of the MS-BN specification. The question of

whether the MS-BN model can "fit" in the sense of capturing features that are actually

observed in the data is more important, and we use the parametric encompassing tests

suggested by Breunig et al. (2003) to explore this issue. These tests are designed

to assess whether an estimated model can capture the mean, variance, and various

measures of asymmetry in the data, and they can also provide indirect information on

whether the maximum likelihood estimates reflect the true global maximum.

Letting bθ be the maximum likelihood estimates for the model, the parametric en-

compassing tests compare a sample moment bγ for the raw data (eg a sample mean), with
the corresponding moment γ(bθ) for data that has been generated from the estimated

model. The test statistic is given by

R = (bγ − γ(bθ))0[var(bγ)− var(γ(bθ))]−1(bγ − γ(bθ)).var(γ(bθ)),
and it has a χ2dim(γ) distribution under the null hypothesis that the model is consistent

with the data. Since it is usually difficult to calculate var(γ(bθ), Breunig et al. (2003)
suggest using var(bγ) to approximate [var(bγ)−var(γ(bθ))], thereby making the test more
conservative. When testing Markov-switching models, Breunig et al (2003) suggest

complementing encompassing tests based on the mean and variance with tests based on

q1 = E[I(∆yt−2 < 0,∆yt > 0)]

and

q2 = E[I(∆yt−2 > 0,∆yt > 0)],

where I(A) is the indicator function, taking the value 1 if event A is true and zero

otherwise. These last two moments reflect asymmetries documented in Potter’s (1995)

study of US real GNP, and encompassing tests based on the corresponding sample

moments can indicate whether the model has captured these asymmetries.
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We assess our linear and MS-BN models by applying parametric encompassing tests

for the mean, variance, q1 and q2. Our γ(bθ) statistics are based on 10,000 replicated
samples of the same size as the original data, with starting values fixed at the first

observed data point. As in Breunig et al (2003), we obtain robust estimators of var(bγ)
by running regressions of the sample γt on a constant, using a Newey-West correction

that employs 9 lags. The test results are presented in Table 3. These statistics show

that although both models can capture the asymmetric characteristics of the data very

well, the BN model is unable to capture the variance. The MS-BN model has no trouble

in this regard, suggesting that the use of Markov switching improves the modelling of

the variance of US GNP. We note, however, that the MS-BN model has a little difficulty

in capturing the mean, although this problem is not statistically significant at the 5%

level of significance.

3.3. Forecasting performance

We conclude our model analysis with a small out-of-sample forecasting exercise. All

forecasts are based on the models estimates derived from the initial samples (i.e. we

don’t undertake any further estimation), and the forecasts begin with the first observa-

tion in the out-of-sample data. We generate a sequence of 1 - 8 step ahead forecasts,

roll the forecast origin forward, generate another sequence of 1-8-step ahead forecasts,

and repeat this procedure until we have 12 x 1-step ahead forecasts down to 5 x 8-step

ahead forecasts for the twelve out-of-sample observations. The forecasts are generated

using the standard forecast simulation method with 10,000 replications for each "rolling"

forecast. Multi-step ahead forecasts for the MS-BN models are based on

E(ST+h = 1|yT ) = S1 + λh(Pr(ST = 1|yT )− S1)

where S1 =
(1−p22)

(2−p11−p22) is the unconditional probability of St = 1, λ = p11 + p22 − 1
and (Pr(ST = 1|yT ) is the last filtered probability of ST = 1 conditional on the last

in-sample observation yT . The results of the forecasting exercise are illustrated in Figure

2. The MS-BN model outperforms the BN model for all forecast horizons, although the

difference is not statistically significant.
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4. Conclusion

This paper has shown that an SSOE specification can provide a useful framework for

undertaking BN decompositions when both permanent and transitory components fol-

low a Markov-switching process. The SSOE specification ensures that the permanent

and transitory components in the model are BN components, and one can easily adapt

the techniques that are typically used to estimate UC and MS models to account for

the single source of error. An application to US real GDP shows that an ARIMA(2,1,2)

MS-BN model is well specified, and leads to components that reflect recognized "stylized

facts".

It is interesting to observe that even though the perfect correlation between BN

permanent and transitory components is normally considered to be just a by-product of

BN decomposition, this can be exploited to identify the BN components. The reason for

this is that perfect correlation between innovations to the components implies perfect

correlation between innovations to trend and output, and as noted by Morley et al (2003),

the BN trend is always the conditional expectation of the random walk component for

any I(1) process. Since the SSOE model explicitly implies perfect correlation between

innovations to trend and output, it leads directly to the BN trend.

The SSOE approach is quite easy to work with, and one could easily introduce more

sophisticated MS processes into an SSOE model, and then undertake a BN decomposi-

tion. Such exercises could be the focus of future research.
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Table 1: Estimates of MS-BN model

MS-BN Model

Parameter Coeff Std Error

α1 1.1446 0.0000

φ11 1.2778 0.0001

φ21 -0.9912 0.0001

µ1 0.4994 0.0002

θ11 0.4226 0.0001

α2 1.3476 0.0001

φ12 1.4352 0.0002

φ22 -0.8183 0.0002

µ2 0.9655 0.0000

θ12 0.2526 0.0001

p11 0.6268 0.0000

p22 0.8524 0.0001

R2∗ 0.7127

SSE 153.30

AIC -0.2162

* The R2 statistic is obtained by regressing the quarterly change in GDP against the

change in the BN trend component.
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Table 2: Estimates of BN model

BN Model

Parameter Coeff Std Error

α 1.2379 0.1419

φ1 1.3724 0.1334

φ2 -0.7760 0.1644

β 0.8520 0.0834

θ 0.3477 0.1154

R2∗ 0.8493

SSE 188.90

AIC -0.0731

* The R2 statistic is obtained by regressing the quarterly change in GDP against the

change in the BN trend component.
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Table 3: Parametric Encompassing Test Results for MS—BN and BN

Models

MS-BN Model

Model Data R-stat p-value∗

Mean 824.18 819.07 3.3222 0.0684

Variance 2665.01 2668.41 0.0316 0.8588

q1 0.1048 0.1464 0.0761 0.7827

q2 0.7381 0.6523 0.1539 0.6949

BN Model

Model Data R-stat p-value∗

Mean 821.18 819.07 0.5685 0.4509

Variance 2791.72 2668.41 41.5654 0.0000

q1 0.1463 0.1464 0.0000 0.9996

q2 0.6511 0.6523 0.0000 0.9957

∗The test statistic is distributed as a χ21
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Figure 1: Permanent and Transitory Components, Filtered

and Smoothed Probability of Recession
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Note: The pair of lines on the graphs indicate peak to trough episodes (recessions) recorded by NBER.
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Figure 2: Forecast Performance of MS-BN and BN Models
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