10,320 research outputs found
Quantum size effect in Pb(100) films: the role of symmetry and implication for film growth
We show from density-functional calculations that Pb(100) thin films exhibit
quantum size effect with a bilayer periodicity in film energies, film
relaxations, and work functions, which originate from different symmetry of the
stacking geometry of odd and even layer films. The bilayer periodicity of the
film energy is argued to survive on a semiconductor substrate, which should
allow the growth of ``magically'' thick even-layer Pb(100) films. Furthermore,
it is found that the quantum well states in a simple metal film can be
classified into -bonded and -bonded states, which quantize
independently
Rubber friction on (apparently) smooth lubricated surfaces
We study rubber sliding friction on hard lubricated surfaces. We show that
even if the hard surface appears smooth to the naked eye, it may exhibit short
wavelength roughness, which may give the dominant contribution to rubber
friction. That is, the observed sliding friction is mainly due to the
viscoelastic deformations of the rubber by the substrate surface asperities.
The presented results are of great importance for rubber sealing and other
rubber applications involving (apparently) smooth surfaces.Comment: 7 pages, 15 figure
Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems
. We consider the effect of an external bias voltage and the spatial
variation of the surface potential, on the damping of cantilever vibrations.
The electrostatic friction is due to energy losses in the sample created by the
electromagnetic field from the oscillating charges induced on the surface of
the tip by the bias voltage and spatial variation of the surface potential. A
similar effect arises when the tip is oscillating in the electrostatic field
created by charged defects in a dielectric substrate. The electrostatic
friction is compared with the van der Waals friction originating from the
fluctuating electromagnetic field due to quantum and thermal fluctuation of the
current density inside the bodies. We show that the electrostatic and van der
Waals friction can be greatly enhanced if on the surfaces of the sample and the
tip there are two-dimension (2D) systems, e.g. a 2D-electron system or
incommensurate layers of adsorbed ions exhibiting acoustic vibrations. We show
that the damping of the cantilever vibrations due to the electrostatic friction
may be of similar magnitude as the damping observed in recent experiments of
Stipe \textit{et al} [B.C.Stipe, H.J.Mamin, T.D.Stowe, T.W.Kenny, and D.Rugar,
Phys.Rev. Lett.% \textbf{87}, 0982001]. We also show that at short separation
the van der Waals friction may be large enough to be measured experimentally.Comment: 11 pages, 2 figure
Rubber friction on wet and dry road surfaces: the sealing effect
Rubber friction on wet rough substrates at low velocities is typically 20-30%
smaller than for the corresponding dry surfaces. We show that this cannot be
due to hydrodynamics and propose a novel explanation based on a sealing effect
exerted by rubber on substrate "pools" filled with water. Water effectively
smoothens the substrate, reducing the major friction contribution due to
induced viscoelastic deformations of the rubber by surface asperities. The
theory is illustrated with applications related to tire-road friction.Comment: Format Revtex 4; 8 pages, 11 figures (no color); Published on Phys.
Rev. B (http://link.aps.org/abstract/PRB/v71/e035428); previous work on the
same topic: cond-mat/041204
Friction Laws for Elastic Nano-Scale Contacts
The effect of surface curvature on the law relating frictional forces F with
normal load L is investigated by molecular dynamics simulations as a function
of surface symmetry, adhesion, and contamination. Curved, non-adhering, dry,
commensurate surfaces show a linear dependency, F proportional to L, similar to
dry flat commensurate or amorphous surfaces and macroscopic surfaces. In
contrast, curved, non-adhering, dry, amorphous surfaces show F proportional to
L^(2/3) similar to friction force microscopes. In our model, adhesive effects
are most adequately described by the Hertz plus offset model, as the
simulations are confined to small contact radii. Curved lubricated or
contaminated surfaces show again different behavior; details depend on how much
of the contaminant gets squeezed out of the contact. Also, it is seen that the
friction force in the lubricated case is mainly due to atoms at the entrance of
the tip.Comment: 7 pages, 5 figures, submitted to Europhys. Let
Fluid flow at the interface between elastic solids with randomly rough surfaces
I study fluid flow at the interface between elastic solids with randomly
rough surfaces. I use the contact mechanics model of Persson to take into
account the elastic interaction between the solid walls and the Bruggeman
effective medium theory to account for the influence of the disorder on the
fluid flow. I calculate the flow tensor which determines the pressure flow
factor and, e.g., the leak-rate of static seals. I show how the perturbation
treatment of Tripp can be extended to arbitrary order in the ratio between the
root-mean-square roughness amplitude and the average interfacial surface
separation. I introduce a matrix D(Zeta), determined by the surface roughness
power spectrum, which can be used to describe the anisotropy of the surface at
any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta)
(generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.Comment: 16 pages, 14 figure
Element specific characterization of heterogeneous magnetism in (Ga,Fe)N films
We employ x-ray spectroscopy to characterize the distribution and magnetism
of particular alloy constituents in (Ga,Fe)N films grown by metal organic vapor
phase epitaxy. Furthermore, photoelectron microscopy gives direct evidence for
the aggregation of Fe ions, leading to the formation of Fe-rich nanoregions
adjacent to the samples surface. A sizable x-ray magnetic circular dichroism
(XMCD) signal at the Fe L-edges in remanence and at moderate magnetic fields at
300 K links the high temperature ferromagnetism with the Fe(3d) states. The
XMCD response at the N K-edge highlights that the N(2p) states carry
considerable spin polarization. We conclude that FeN{\delta} nanocrystals, with
\delta > 0.25, stabilize the ferromagnetic response of the films.Comment: 4 pages, 3 figures, 1 tabl
Domino: exploring mobile collaborative software adaptation
Social Proximity Applications (SPAs) are a promising new area for ubicomp software that exploits the everyday changes in the proximity of mobile users. While a number of applications facilitate simple file sharing between co–present users, this paper explores opportunities for recommending and sharing software between users. We describe an architecture that allows the recommendation of new system components from systems with similar histories of use. Software components and usage histories are exchanged between mobile users who are in proximity with each other. We apply this architecture in a mobile strategy game in which players adapt and upgrade their game using components from other players, progressing through the game through sharing tools and history. More broadly, we discuss the general application of this technique as well as the security and privacy challenges to such an approach
Adsorbate induced enhancement of electrostatic non-contact friction
We study the non-contact friction between an atomic force microscope tip and
a metal substrate in the presence of bias voltage. The friction is due to
energy losses in the sample created by the electromagnetic field from the
oscillating charges induced on the tip surface by the bias voltage. We show
that the friction can be enhanced by many orders of magnitude if the ads orbate
layer can support acoustic vibrations. The theory predicts the magnitude and
the distance dependence of friction in a good agreement with recent puzzling
non-contact friction experiment \cite{Stipe}. We demonstrate that even an
isolated adsorbate can produce high enough friction to be measured
experimentally.Comment: Published in PR
Recommended from our members
propnet: A Knowledge Graph for Materials Science
Discovering the ideal material for a new application involves determining its numerous properties, such as electronic, mechanical, or thermodynamic, to match those of its desired application. The rise of high-throughput computation has meant that large databases of material properties are now accessible to scientists. However, these databases contain far more information than might appear at first glance, since many relationships exist in the materials science literature to derive, or at least approximate, additional properties. propnet is a new computational framework designed to help scientists to automatically calculate additional information from their datasets. It does this by constructing a network graph of relationships between different materials properties and traversing this graph. Initially, propnet contains a catalog of over 100 property relationships but the hope is for this to expand significantly in the future, and contributions from the community are welcomed
- …