955 research outputs found
The Influence of High Multiplicities at RHIC on the Gamov Factor
The corrections for two-pion correlations due to electromagnetic final-state
interactions at high secondary multiplicities are investigated. The analysis is
performed by solving the Schr\"odinger equation with a potential which is
dictated by the multi-particle environment. Two different post-freeze-out
scenarios are examined. First, for a uniformly spread environment of secondary
particles, a screened Coulomb potential is exploited. It is shown that the
presence of a static and uniform post-freeze-out medium results in a noticeable
deviation from the standard Gamov factor. However, after going to a more
realistic model of an expanding pion system, this conclusion changes
drastically. We argue that the density of the secondary pions n_\pi(t,R), where
R is a distance from the fireball, is bounded from above by n_\pi(t,R)\le
const/R^2 for all times t. Then, a two-particle scalar potential which is found
as a solution of the Maxwell equation for non-uniform medium replaces the
screened one. Even this upper limit does not result in an essential deviation
from the Gamov correction.Comment: 11 pages, 7 figures, minor text corrections are mad
Bose-Einstein Correlations of Pion Wavepackets
A wavepacket model for a system of free pions, which takes into account the
full permutation symmetry of the wavefunction and which is suitable for any
phase space parametrization is developed. The properties of the resulting mixed
ensembles and the two-particle correlation function are discussed. A physical
interpretation of the chaoticity lambda as localizat of the pions in the source
is presented.
Two techniques to generate test-particles, which satisfy the probability
densities of the wavepacket state, are studied:
1. A Monte Carlo procedure in momentum space based on the standard Metropolis
technique.
2. A molecular dynamic procedure using Bohm's quantum theory of motion.
In order to reduce the numerical complexity, the separation of the
wavefunction into momentum space clusters is discussed. In this context th
influence of an unauthorized factorization of the state, i. e. the omissio of
interference terms, is investigated. It is shown that the correlation radius
remains almost uneffected, but the chaoticity parameter decreases
substantially. A similar effect is observed in systems with high multiplic
where the omission of higher order corrections in the analysis of two-part
correlations causes a reduction of the chaoticity and the radius.
The approximative treatment of the Coulomb interaction between pions and
source is investigated. The results suggest that Coulomb effects on the co
radii are not symmetric for pion pairs of different charges. For negative the
radius, integrated over the whole momentum spectrum, increases substan while
for positive pions the radius remains almost unchanged.Comment: 15 pages, 8 figures, 0.8 Mb, uses ljour2-macro, Submitted to Z. Phys.
A (1997
Multi-boson effects and the normalization of the two-pion correlation function
The two-pion correlation function can be defined as a ratio of either the
measured momentum distributions or the normalized momentum space probabilities.
We show that the first alternative avoids certain ambiguities since then the
normalization of the two-pion correlator contains important information on the
multiplicity distribution of the event ensemble which is lost in the second
alternative. We illustrate this explicitly for specific classes of event
ensembles.Comment: 6 pages, three figures,submit to PR
Testing the Resolving Power of 2-D K^+ K^+ Interferometry
Adopting a procedure previously proposed to quantitatively study
two-dimensional pion interferometry, an equivalent 2-D chi^2 analysis was
performed to test the resolving power of that method when applied to less
favorable conditions, i.e., if no significant contribution from long lived
resonances is expected, as in kaon interferometry. For that purpose, use is
made of the preliminary E859 K^+ K^+ interferometry data from Si+Au collisions
at 14.6 AGeV/c. As expected, less sensitivity is achieved in the present case,
although it still is possible to distinguish two distinct decoupling
geometries. The present analysis seems to favor scenarios with no resonance
formation at the AGS energy range, if the preliminary K^+ K^+ data are
confirmed. The possible compatibility of data with zero decoupling proper time
interval, conjectured by the 3-D experimental analysis, is also investigated
and is ruled out when considering more realistic dynamical models with
expanding sources. These results, however, clearly evidence the important
influence of the time emission interval on the source effective transverse
dimensions. Furthermore, they strongly emphasize that the static Gaussian
parameterization, commonly used to fit data, cannot be trusted under more
realistic conditions, leading to distorted or even wrong interpretation of the
source parameters!Comment: 11 pages, RevTeX, 4 Postscript figures include
Hanbury-Brown--Twiss Analysis in a Solvable Model
The analysis of meson correlations by Hanbury-Brown--Twiss interferometry is
tested with a simple model of meson production by resonance decay. We derive
conditions which should be satisfied in order to relate the measured momentum
correlation to the classical source size. The Bose correlation effects are
apparent in both the ratio of meson pairs to singles and in the ratio of like
to unlike pairs. With our parameter values, we find that the single particle
distribution is too distorted by the correlation to allow a straightforward
analysis using pair correlation normalized by the singles rates. An analysis
comparing symmetrized to unsymmetrized pairs is more robust, but nonclassical
off-shell effects are important at realistic temperatures.Comment: 21 pages + 9 figures (tarred etc. using uufiles, submitted
separately), REVTeX 3.0, preprint number: DOE/ER/40561-112/INT93-00-3
Evidence for chemical equilibration at RHIC
This contribution focuses on the results of statistical model calculations at
RHIC energies, including recently available experimental data. Previous
calculations of particle yield ratios showed good agreement with measurements
at SPS and lower energies, suggesting that the composite system possesses a
high degree of chemical equilibrium at freeze-out. The effect of feeddown
contamination on the model parameters is discussed, and the sensitivity of
individual ratios to the model parameters (, ) is illustrated.Comment: Talk presented at Strange Quarks in Matter 2001, Frankfurt, September
24-29, 2001. Proceedings to be published by J. Phys. G. 8 pages with 4
figure
Multiplicity dependence of identical particle correlations in the quantum optical approach
Identical particle correlations at fixed multiplicity are consideres in the
presence of chaotic and coherent fields. The multiplicity distribution,
one-particle momentum density, and two-particle correlation function are
obtained based on the diagrammatic representation for cmulants in
semi-inclusive events. Our formulation is applied to the analysis of the
experimental data on the multiplicity dependence of correlation functions
reported by the UA1 and the OPAL Collaborations.Comment: 14 pages, 7 figure
Small size boundary effects on two-pion interferometry
The Bose-Einstein correlations of two identically charged pions are derived
when these particles, the most abundantly produced in relativistic heavy ion
collisions, are confined in finite volumes. Boundary effects on single pion
spectrum are also studied. Numerical results emphasize that conventional
formulation usually adopted to describe two-pion interferometry should not be
used when the source size is small, since this is the most sensitive case to
boundary effects. Specific examples are considered for better illustration.Comment: more discussion on Figure4 and diffuse boundar
Antiproton Production in Collisions at AGS Energies
Inclusive and semi-inclusive measurements are presented for antiproton
() production in proton-nucleus collisions at the AGS. The inclusive
yields per event increase strongly with increasing beam energy and decrease
slightly with increasing target mass. The yield in 17.5 GeV/c p+Au
collisions decreases with grey track multiplicity, , for ,
consistent with annihilation within the target nucleus. The relationship
between and the number of scatterings of the proton in the nucleus is
used to estimate the annihilation cross section in the nuclear
medium. The resulting cross section is at least a factor of five smaller than
the free annihilation cross section when assuming a small or
negligible formation time. Only with a long formation time can the data be
described with the free annihilation cross section.Comment: 8 pages, 6 figure
- …
