4,183 research outputs found
Theory of Interfacial Plasmon-Phonon Scattering in Supported Graphene
One of the factors limiting electron mobility in supported graphene is remote
phonon scattering. We formulate the theory of the coupling between graphene
plasmon and substrate surface polar phonon (SPP) modes, and find that it leads
to the formation of interfacial plasmon-phonon (IPP) modes, from which the
phenomena of dynamic anti-screening and screening of remote phonons emerge. The
remote phonon-limited mobilities for SiO, HfO, h-BN and
AlO substrates are computed using our theory. We find that h-BN
yields the highest peak mobility, but in the practically useful high-density
range the mobility in HfO-supported graphene is high, despite the fact
that HfO is a high- dielectric with low-frequency modes. Our
theory predicts that the strong temperature dependence of the total mobility
effectively vanishes at very high carrier concentrations. The effects of
polycrystallinity on IPP scattering are also discussed.Comment: 33 pages, 7 figure
Exploration of nonlocalities in ensembles consisting of bipartite quantum states
It is revealed that ensembles consisting of multipartite quantum states can
exhibit different kinds of nonlocalities. An operational measure is introduced
to quantify nonlocalities in ensembles consisting of bipartite quantum states.
Various upper and lower bounds for the measure are estimated and the exact
values for ensembles consisting of mutually orthogonal maximally entangled
bipartite states are evaluated.Comment: The title and some contents changed, 4 pages, no figure
Supplementation of iron alone and combined with vitamins improves haematological status, erythrocyte membrane fluidity and oxidative stress in anaemic pregnant women
Pregnancy is a condition exhibiting increased susceptibility to oxidative stress, and Fe plays a central role in generating harmful oxygen species. The objective of the present study is to investigate the changes in haematological status, oxidative stress and erythrocyte membrane fluidity in anaemic pregnant women after Fe supplementation with and without combined vitamins. The study was a 2 months double-blind, randomised trial. Pregnant women (n 164) were allocated to four groups: group C was the placebo control group; group I was supplemented daily with 60 mg Fe (ferrous sulphate) daily; group IF was supplemented daily with Fe plus 400 µg folic acid; group IM was supplemented daily with Fe plus 2 mg retinol and 1 mg riboflavin, respectively. After the 2-month trial, Hb significantly increased by 15·8, 17·3 and 21·8 g/l, and ferritin by 2·8, 3·6 and 11·0 µg/l, in the I, IF and IM groups compared with placebo. Polarisation (¿) and microviscosity (¿) decreased significantly in other groups compared with placebo, indicating an increase in membrane fluidity. Significant decreases of ¿ and ¿ values compared with group C were 0·033 and 0·959 for group I, 0·037 and 1·074 for group IF and 0·064 and 1·865 for group IM, respectively. In addition, significant increases of glutathione peroxidase activities and decreases of malondialdehyde were shown in all treated groups, as well as increases of plasma retinol and urine riboflavin in group IM. The findings show that supplementation with Fe and particularly in combination with vitamins could improve the haematological status as well as oxidative stress and erythrocyte membrane fluidit
A Dimension-Adaptive Multi-Index Monte Carlo Method Applied to a Model of a Heat Exchanger
We present an adaptive version of the Multi-Index Monte Carlo method,
introduced by Haji-Ali, Nobile and Tempone (2016), for simulating PDEs with
coefficients that are random fields. A classical technique for sampling from
these random fields is the Karhunen-Lo\`eve expansion. Our adaptive algorithm
is based on the adaptive algorithm used in sparse grid cubature as introduced
by Gerstner and Griebel (2003), and automatically chooses the number of terms
needed in this expansion, as well as the required spatial discretizations of
the PDE model. We apply the method to a simplified model of a heat exchanger
with random insulator material, where the stochastic characteristics are
modeled as a lognormal random field, and we show consistent computational
savings
A novel approach to modelling and simulating the contact behaviour between a human hand model and a deformable object
A deeper understanding of biomechanical behaviour of human hands becomes fundamental for any human hand-operated Q2 activities. The integration of biomechanical knowledge of human hands into product design process starts to play an increasingly important role in developing an ergonomic product-to-user interface for products and systems requiring high level of comfortable and responsive interactions. Generation of such precise and dynamic models can provide scientific evaluation tools to support product and system development through simulation. This type of support is urgently required in many applications such as hand skill training for surgical operations, ergonomic study of a product or system developed and so forth. The aim of this work is to study the contact behaviour between the operators’ hand and a hand-held tool or other similar contacts, by developing a novel and precise nonlinear 3D finite element model of the hand and by investigating the contact behaviour through simulation. The contact behaviour is externalised by solving the problem using the bi-potential method. The human body’s biomechanical characteristics, such as hand deformity and structural behaviour, have been fully modelled by implementing anisotropic hyperelastic laws. A case study is given to illustrate the effectiveness of the approac
Hyperon polarization in semi-inclusive deeply inelastic lepton-nucleon scattering at high energy
We calculate the polarizations for different octet hyperons produced in the
current fragmentation regions of the deeply inelastic lepton-nucleon
scatterings and at high energy
using different models for spin transfer in fragmentation processes. The
results show that measurements of those hyperon polarizations should provide
useful information to distinguish between different models in particular the
SU(6) and the DIS pictures used frequently in the literature. We found, in
particular, that measuring the polarization of produced in these
processes can give a better test to the validity of the different spin transfer
models.Comment: 30 pages, 13 figure
Scanning Tunnelling Spectroscopic Studies of Dirac Fermions in Graphene and Topological Insulators
We report novel properties derived from scanning tunnelling spectroscopic (STS) studies of Dirac fermions in graphene and the surface state (SS) of a strong topological insulator (STI), Bi_2Se_3. For mono-layer graphene grown on Cu by chemical vapour deposition (CVD), strain-induced scalar and gauge potentials are manifested by the charging effects and the tunnelling conductance peaks at quantized energies, respectively. Additionally, spontaneous time-reversal symmetry breaking is evidenced by the alternating anti-localization and localization spectra associated with the zero-mode of two sublattices while global time-reversal symmetry is preserved under the presence of pseudo-magnetic fields. For Bi_2Se_3 epitaxial films grown on Si(111) by molecular beam epitaxy (MBE), spatially localized unitary impurity resonances with sensitive dependence on the energy difference between the Fermi level and the Dirac point are observed for samples thicker than 6 quintuple layers (QL). These findings are characteristic of the SS of a STI and are direct manifestation of strong topological protection against impurities. For samples thinner than 6-QL, STS studies reveal the openup of an energy gap in the SS due to overlaps of wave functions between the surface and interface layers. Additionally, spin-preserving quasiparticle interference wave-vectors are observed, which are consistent with the Rashba-like spin-orbit splitting
The application of OLAP technology in the automated risk assessment system for oil and gas fields
The article shows the advantages of using OLAP technology in the engineering of fields' development and its application in the automated risk assessment system
Optimal Uncertainty Quantification
We propose a rigorous framework for Uncertainty Quantification (UQ) in which
the UQ objectives and the assumptions/information set are brought to the
forefront. This framework, which we call \emph{Optimal Uncertainty
Quantification} (OUQ), is based on the observation that, given a set of
assumptions and information about the problem, there exist optimal bounds on
uncertainties: these are obtained as values of well-defined optimization
problems corresponding to extremizing probabilities of failure, or of
deviations, subject to the constraints imposed by the scenarios compatible with
the assumptions and information. In particular, this framework does not
implicitly impose inappropriate assumptions, nor does it repudiate relevant
information. Although OUQ optimization problems are extremely large, we show
that under general conditions they have finite-dimensional reductions. As an
application, we develop \emph{Optimal Concentration Inequalities} (OCI) of
Hoeffding and McDiarmid type. Surprisingly, these results show that
uncertainties in input parameters, which propagate to output uncertainties in
the classical sensitivity analysis paradigm, may fail to do so if the transfer
functions (or probability distributions) are imperfectly known. We show how,
for hierarchical structures, this phenomenon may lead to the non-propagation of
uncertainties or information across scales. In addition, a general algorithmic
framework is developed for OUQ and is tested on the Caltech surrogate model for
hypervelocity impact and on the seismic safety assessment of truss structures,
suggesting the feasibility of the framework for important complex systems. The
introduction of this paper provides both an overview of the paper and a
self-contained mini-tutorial about basic concepts and issues of UQ.Comment: 90 pages. Accepted for publication in SIAM Review (Expository
Research Papers). See SIAM Review for higher quality figure
- …
