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It is revealed that ensembles consisting of multipartite quantum states can exhibit different kinds of
nonlocalities. An operational measure is introduced to quantify nonlocalities in ensembles consisting of bipartite
quantum states. Various upper and lower bounds for the measure are estimated and the exact values for ensembles
consisting of mutually orthogonal maximally entangled bipartite states are evaluated.
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Introduction. Although mutually orthogonal multipartite
quantum states are always distinguishable through joint mea-
surements, it was found by Bennett et al. [1] in 1999 that
there are ensembles of mutually orthogonal bipartite product
states that cannot be distinguished by means of local operations
and classical communication (LOCC); this phenomenon was
referred to as the nonlocality without entanglement. The
essence of this nonlocality is that the maximal information
achievable through LOCC to distinguish an ensemble of
mutually orthogonal multipartite states may be strictly less
than that which could be obtained through joint measurements.
Since the discovery of this phenomenon, substantial efforts
have been devoted to searching for the conditions under which
a given ensemble can exhibit such a kind of nonlocality
[2–13]. As is known, any ensemble consisting of the four Bell
states can exhibit the nonlocality [11], whereas the ensembles
consisting of only two orthogonal states cannot [12]. As a
latest result, it was indicated recently that the nonlocality exists
in almost all ensembles consisting of more than d mutually
orthogonal d⊗n states [13].

So far, most investigations on this intriguing ensemble
nonlocality have been made on qualitative descriptions in
analogy to quantum entanglement judgment (that is, finding
conditions that can be used to check whether a given ensemble
can exhibit the nonlocality), while the quantification of the
nonlocality and its implications are still awaited. To our
knowledge, quantification of the nonlocalities in ensembles
has only been addressed in detail in Ref. [14], though how to
quantify quantum entanglement has been intensively studied.

In this article we explore nonlocalities in ensembles con-
sisting of bipartite quantum states and introduce an operational
measure for them. The measure is defined through considering
the tensor power ε⊗n, rather than the ensemble ε itself, such
that some results from information theory can be used directly.
Our discussions focus mainly on ensembles whose states are
mutually orthogonal, motivated by the following two ques-
tions: if an ensemble of mutually orthogonal bipartite states
cannot be distinguished by LOCC, how much entanglement
in addition to LOCC is needed [15]? and if they can be
distinguished by LOCC, how much entanglement can be
distilled in the process of locally distinguishing?

Entanglement charge. LOCC distinguishing the states in
the ensemble ε = {pX, ρAB

X } can be conceived as a game.

Suppose that there is a classical information source producing
symbol X with probability pX. If the source outputs symbol
X, Alice and Bob will be given a quantum state ρAB

X . They
know the ensemble ε and their task is to determine the value
of X via a measurement implemented through LOCC. How
much information they have gained about the value of X can
be described by the mutual information between X and the
measurement result Y ,

I (X; Y ) = H (X) + H (Y ) − H (XY ), (1)

where H (·) is the Shannon entropy of the random variables.
The value of X can be determined through the measurement
result Y if and only if I (X; Y ) = H (X) [16]. The maximal
mutual information achievable through LOCC is called locally
accessible information and it will be denoted by ILOCC(ε).
Similarly we can define IGlobal(ε), which is the maximal mutual
information achievable through joint measurements and will
be equal to H (X) when the states are mutually orthogonal.
Generally there is ILOCC(ε) � IGlobal(ε) � H (X).

The tensor power of the ensemble ε = {pX, ρAB
X } is de-

noted as ε⊗n = {pXn, ρAnBn

Xn }, where pXn = pX1pX2 , . . . , pXn
,

ρAnBn

Xn = ρ
A1B1
X1

⊗ ρ
A2B2
X2

, . . . ,⊗ρ
AnBn

Xn
, and Xi are independent

and identically distributed classical variables as X. Now Alice
holds An and Bob holds Bn. To obtain the information
about the value of Xn, they make a measurement that
satisfies the following conditions: (1) the mutual information
between Xn and the measurement result Y satisfies I (Xn; Y ) �
IGlobal(ε⊗n) − δn with limn→∞ δn = 0; (2) it is implemented
through LOCC plus n × αn ebits of entanglement; (3) when
the measurement result Y with the probability pY is obtained,
n × βnY ebits of entanglement is distilled. We now introduce
a new quantity-entanglement charge, which is defined as

N (ε) = inf lim
n→∞

(
αn −

∑
Y

pY × βnY

)
, (2)

where the infimum operation is taken over all measurements
satisfying the aforementioned conditions. N (ε) is applicable
to ensembles consisting of general bipartite states and its value
can be positive, negative, and zero.

Two kinds of ensemble nonlocalities and their quantifica-
tion. The ensembles with positive N (ε) are different from those
with negative N (ε) in the sense that they can exhibit different
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kinds of nonlocalities. We focus on ensembles consisting of
mutually orthogonal bipartite states hereafter. Now there is
IGlobal(ε⊗n) = H (Xn) and the first condition required for the
measurement can be interpreted that the states in the ensemble
ε will be distinguished with vanishing error.

In the case N (ε) > 0, quantum entanglement is needed in
addition to LOCC to distinguish the states in the ensemble ε

with vanishing error. The meaning of the positive entangle-
ment charge N (ε) can be manifested through the symbolic
expression

N (ε)[qq] + LOCC|ε => IGlobal(ε), (3)

where [qq] means an ebit of quantum entanglement and
IGlobal(ε) = H (X). Noting that H (X) is the information
needed to distinguish the states in ε, the positive N (ε)
quantifies the minimal nonlocal resources (entanglement) that
are needed asymptotically in addition to LOCC to get the full
information H (X) to distinguish the states in ε. In this case we
refer to the corresponding nonlocality exhibited by ensembles
as information nonlocality and employ N (ε) as a measure to
quantify it.

In the case N (ε) < 0, quantum entanglement is not needed
in addition to LOCC to distinguish the states in the ensemble
ε with vanishing error (if the entanglement is still needed to
assist the process, it could be viewed as a kind of catalyst),
and additionally some entanglement can be distilled. Similarly
the meaning of the negative entanglement charge N (ε) can be
manifested through the expression

LOCC|ε => IGlobal(ε) + |N (ε)|[qq]. (4)

In this case, the ensemble ε has no information nonlocality;
however, it still exhibits some kind of nonlocality since certain
entanglement can be distilled. Hereafter we may refer to such
kind of ensemble nonlocality as entanglement nonlocality and
employ |N (ε)| as its measure since it quantifies the maximal
quantum entanglement that can be distilled in the asymptotic
limit.

Interestingly, in the case N (ε) = 0, the ensemble ε has
neither the information nonlocality nor the entanglement
nonlocality mentioned previously. As a typical example,
N (ε) = 0 for ensembles that consist of LOCC distinguishable
product states [17].

Bounds for entanglement charge. Although the entangle-
ment charge N (ε) is usually hard to compute, some useful
bounds for it can be obtained. Bennett et al. considered
how much quantum transmission is needed to complete a
special distinguishing measurement in Ref. [1], where an upper
bound for our defined N (ε) is implied, that is, N (ε) � S(ρA),
where ρA = TrB(

∑
X pXρAB

X ) and S(·) is the quantum entropy.
This can be obtained through the protocol that Alice first
compresses her state [18] and teleports it to Bob [19] and
Bob then distinguishes the states locally. The following are
more tight upper bounds.

Theorem 1. Suppose ε = {pX, ρAB
X } is an ensemble consist-

ing of mutually orthogonal bipartite states. The entanglement
charge will satisfy

N (ε) � S(A|B) = S(ρAB) − S(ρB), (5)

N (ε) � S(B|A) = S(ρAB) − S(ρA), (6)

where ρAB = ∑
X pXρAB

X , ρB = TrAρAB , ρA = TrBρAB , and
S(·) is the quantum entropy.

Proof. The theorem can be derived from the quantum state
merging [20,21]. To distinguish the states in the ensemble ε⊗n,
the part An on Alice’s side can be merged to Bob and then
he distinguishes the states locally. In the process of merging
[20,21], the net consumed entanglement can be S(A|B) ebits,
so Eq. (5) is obtained. If the part Bn on Bob’s side is first
merged to Alice and then she distinguishes the states locally,
similarly the net consumed entanglement can be S(B|A) ebits,
so Eq. (6) is obtained. �

The above upper bounds depend only on the state ρAB ,
so different ensembles may have the same upper bound. It is
possible to get a smaller bound if we examine the states in the
ensemble carefully since it is possible that only a part of A

needs to be merged to Bob and then the states become LOCC
distinguishable.

Theorem 2. Suppose ε = {pX, ρAB
X } is an ensemble con-

sisting of mutually orthogonal bipartite pure states. The
entanglement charge will satisfy

N (ε) �
∑

pXS
(
ρA

X

) − IρAB (A; B), (7)

where S(·) is the quantum entropy and IρAB (A; B) = S(ρA) +
S(ρB ) − S(ρAB) is the quantum mutual information with
ρAB = ∑

X pXρAB
X , ρA = TrBρAB , ρB = TrAρAB , and ρA

X =
TrBρAB

X .
The quantum mutual information IρAB (A; B) is always

nonnegative and it can be regarded as a quantification of
the total correlation between A and B, so Eq. (7) means
that the entanglement charge is not smaller than the average
entanglement of the states in the ensemble minus the total
correlation between A and B. When ρAB = ρA ⊗ ρB there
is IρAB (A; B) = 0 and N (ε) �

∑
pXS(ρA

X); the average en-
tanglement of the states in the ensemble is a lower bound
of the entanglement charge. This case will happen when we
consider an ensemble consisting of full basis states with equal
probability.

Proof. According to the definition of N (ε) we should
consider distinguishing the states of the ensemble ε⊗n =
{pXn, ρAnBn

Xn } using LOCC plus n × αn ebits of entanglement.
It is equivalent to distinguish the states of the ensemble
{pXn, ρAnBn

Xn ⊗ �A0B0
n } using LOCC only, where �A0B0

n is a
bipartite pure state with S(�A0

n ) = S(�B0
n ) = n × αn. The

mutual information between Xn and the measurement result
Y will satisfy [22,23]

I (Xn; Y ) � n
[
S(ρB) + S(ρA) −

∑
pXS

(
ρA

X

)]
+ n

(
αn −

∑
pY βnY

)
. (8)

Noting that I (Xn; Y ) � IGlobal(ε⊗n) − δn is required and there
is IGlobal(ε⊗n) = nS(ρAB), we can get

αn −
∑

pY βnY �
∑

pXS
(
ρA

X

) − IρAB (A; B) − δn/n. (9)

Since δn/n will go to zero in the asymptotic limit, we can get
Eq. (7) from Eq. (9). �

The above two theorems give upper and lower bounds
on N (ε). It is valuable to know when the upper and the
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lower bounds will be close. We first rewrite the lower bound
expression in Theorem 2 as

N (ε) � S(A|B) − χA(ε) = S(B|A) − χB(ε), (10)

where χA(ε) = S(ρA) − ∑
pXS(ρA

X) and χB(ε) = S(ρB ) −∑
pXS(ρB

X ) are the Holevo information of the ensembles seen
by Alice and Bob, respectively. As for ensembles consisting
of orthogonal pure states, it is not hard to find that the contents
of the two theorems can be summarized as

S(A|B) − χA(ε) � N (ε) � S(A|B), (11)

when χA(ε) � χB(ε), or

S(B|A) − χB(ε) � N (ε) � S(B|A), (12)

when χB(ε) � χA(ε). From Eqs. (11) and (12), we know that
the upper and the lower bounds will be closer if ever χA(ε)
or χB(ε) is smaller. Noting that χA(ε) is the upper bound
of the information about the value of X that Alice can gain
solely [16], Eq. (11) means that the difference between the
bounds will be small if Alice can gain little information about
the value of X without cooperation with Bob. When χA(ε) = 0
or χB(ε) = 0, the exact value of N (ε) can be obtained. This
occurs only when all ρA

X (or ρB
X ) are the same. Consequently,

we have the following result.
Corollary 1. Suppose that ε = {pX, ρAB

X } is an ensemble
consisting of mutually orthogonal d × d maximally entangled
pure states. The entanglement charge will be

N (ε) = S(ρAB) − S(ρB ) = H (X) − log d, (13)

where H (·) is the Shannon entropy, ρAB = ∑
X pXρAB

X , and
ρB = TrAρAB .

The corollary is true since all ρA
X = TrBρAB

X and ρB
X =

TrAρAB
X are the same maximally mixed state, so there are both

χA(ε) = 0 and χB(ε) = 0; the upper and the lower bounds of
N (ε) become the same value. As is known, the four Bell states
cannot be distinguished by LOCC [11]; however, the corollary
indicates that the entanglement charge N (ε) of an ensemble
consisting of these four states can be any value between
−1 and 1 dependent on their probabilities, so it may have
the information nonlocality, the entanglement nonlocality, or
neither. The reason is that whether the states in the ensemble ε

are LOCC indistinguishable depends only on its states, while
whether the ensemble has the information nonlocality or the
entanglement nonlocality depends not only on its states but
also on the probabilities of the states.

There are other ways to obtain upper bounds for N (ε).
For any ensemble ε = {pX, ρAB

X } whose states are mutually
orthogonal, there exist nonlocal unitary operations UAB such
that the states of the ensemble ε̄ = {pX,UABρAB

X U †AB} are
LOCC distinguishable. For an example we consider the
ensemble ε consisting of the following states:

U (−θ )|0〉A|0〉B, U (−θ )|0〉A|1〉B, (14)

U (−θ )|1〉A|0〉B, U (−θ )|1〉A|1〉B, (15)

where U (−θ ) = exp{−iθσA
x σB

x }. A similar example appears
in Ref. [24] where the nonlocal measurements are discussed.

The states have the same entanglement,

H (cos2 θ ) = − cos2 θ log2 cos2 θ − sin2 θ log2 sin2 θ. (16)

We first consider the case where the states have equal
probability. In this case the upper bounds obtained from
Theorem 1 can be expressed as N (ε) � 1, which is not
satisfactory. Note that if Alice and Bob implement U (θ )
on AB the changed states will be LOCC distinguishable.
The operation U (θ ) can be implemented through LOCC plus
some entanglement. The average entanglement Ē(θ ) needed to
implement U (θ ) is an upper bound of the entanglement charge
N (ε), that is, N (ε) � Ē(θ ). Several expressions for Ē(θ ) are
given [24–27], and the one given in Ref. [25] shows that Ē(θ )
will be smaller than unit when 2θ � 0.75. It means when
2θ � 0.75, the upper bound expression for N (ε) obtained by
calculating the average entanglement to implement U (θ ) will
be better than that in Theorem 1. However, this may not be
true when the states have different probabilities pX. To see
this we note that S(ρA) �

∑
X pXS(ρA

X) = H (cos2 θ ), so from
Theorem 1 there is

N (ε) � S(ρAB) − S(ρA) � H (X) − H (cos2 θ ). (17)

The above upper bound for N (ε) depends on the probabilities
pX and surely it will be smaller than Ē(θ ) when H (X) is
smaller than Ē(θ ) + H (cos2 θ ).

Discussion. Ensembles consisting of mutually orthogonal
bipartite states can be classified into three categories according
to the value of the entanglement charge N (ε): one has the
information nonlocality, one has the entanglement nonlocality,
and the third has neither. For an ensemble, if it has the
information nonlocality obviously the states in it are LOCC
indistinguishable; however, the inverse may not be true. The
reason is that the value of the entanglement charge N (ε)
depends not only on the states in the ensemble ε but also
on the probabilities of the states, whereas whether the states in
the ensemble ε are LOCC indistinguishable does not depend
on their probabilities.

The concepts of information nonlocality and entanglement
nonlocality can be extended to ensembles consisting of general
bipartite quantum states since the definition of the entan-
glement charge N (ε) does not depend on the orthogonality
of the states. The extension is straightforward and also the
entanglement charge N (ε) can be used as a measure for them.
The upper bound expressions in Theorem 1 are also applicable
for general ensembles but the lower bound expression in
Theorem 2 needs to be changed into

N (ε) �
∑

pXS
(
ρA

X

) − IρAB (A; B) − �(ε), (18)

where �(ε) = S(ρAB) − IGlobal(ε), which can be obtained in
the same way as the states are mutually orthogonal.

When the states in the ensemble ε = {pX, ρAB
X } are not mu-

tually orthogonal, they cannot be distinguished even through
joint measurements, and the mutual information IGlobal(ε) is
the maximal information about the value of X that can be
achieved through physical measurements. Nevertheless, the
entanglement charge N (ε) still has its operational meaning.
The positive N (ε) just quantifies the minimal entanglement
that is needed asymptotically in addition to LOCC to achieve
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IGlobal(ε). When N (ε) is negative, asymptotically LOCC can
get the information IGlobal(ε), and additionally at most |N (ε)|
ebits of entanglement can be distilled.

Conclusion. We have introduced the entanglement charge
as a measure to quantify nonlocalities in ensembles consisting
of bipartite quantum states. We have estimated various upper
and lower bounds for the entanglement charge and evalu-
ated the exact values for ensembles consisting of mutually
orthogonal maximally entangled bipartite pure states. The

present work is expected to evoke more profound understand-
ings of nonlocalities in ensembles.
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