13,291 research outputs found

    Space station integrated wall design and penetration damage control. Task 3: Theoretical analysis of penetration mechanics

    Get PDF
    The efforts to provide a penetration code called PEN4 version 10 is documented for calculation of projectile and target states for the impact of 2024-T3 aluminum, R sub B 90 1018 steel projectiles and icy meteoroids onto 2024-T3 aluminum plates at impact velocities from 0 to 16 km/s. PEN4 determines whether a plate is perforated by calculating the state of fragmentation of projectile and first plate. Depth of penetration into the second to n sup th plate by fragments resulting from first plate perforation is determined by multiple cratering. The results from applications are given

    Strain enhancement of superconductivity in CePd2Si2 under pressure

    Full text link
    We report resistivity and calorimetric measurements on two single crystals of CePd2Si2 pressurized up to 7.4 GPa. A weak uniaxial stress induced in the pressure cell demonstrates the sensitivity of the physics to anisotropy. Stress applied along the c-axis extends the whole phase diagram to higher pressures and enhances the superconducting phase emerging around the magnetic instability, with a 40% increase of the maximum superconducting temperature, Tc, and a doubled pressure range. Calorimetric measurements demonstrate the bulk nature of the superconductivity.Comment: 4 pages, 4 figure

    Nonparametric Instrumental Variable Estimation Under Monotonicity

    Get PDF
    The ill‐posedness of the nonparametric instrumental variable (NPIV) model leads to estimators that may suffer from poor statistical performance. In this paper, we explore the possibility of imposing shape restrictions to improve the performance of the NPIV estimators. We assume that the function to be estimated is monotone and consider a sieve estimator that enforces this monotonicity constraint. We define a constrained measure of ill‐posedness that is relevant for the constrained estimator and show that, under a monotone IV assumption and certain other mild regularity conditions, this measure is bounded uniformly over the dimension of the sieve space. This finding is in stark contrast to the well‐known result that the unconstrained sieve measure of ill‐posedness that is relevant for the unconstrained estimator grows to infinity with the dimension of the sieve space. Based on this result, we derive a novel non‐asymptotic error bound for the constrained estimator. The bound gives a set of data‐generating processes for which the monotonicity constraint has a particularly strong regularization effect and considerably improves the performance of the estimator. The form of the bound implies that the regularization effect can be strong even in large samples and even if the function to be estimated is steep, particularly so if the NPIV model is severely ill‐posed. Our simulation study confirms these findings and reveals the potential for large performance gains from imposing the monotonicity constraint

    Connected to Give: Faith Communities

    Get PDF
    This is the third report in the "Connected to Give" series, and compares the relationship between the charitable giving behavior of American's from a variety of backgrounds, including their key demographics; an examination their motivations for giving; and the types of organizations to which they contribute

    Effect of pressure cycling on Iron: Signatures of an electronic instability and unconventional superconductivity

    Get PDF
    High pressure electrical resistivity and x-ray diffraction experiments have been performed on Fe single crystals. The crystallographic investigation provides direct evidence that in the martensitic bcchcpbcc \rightarrow hcp transition at 14 GPa the {110}bcc\lbrace 110\rbrace_{bcc} become the {002}hcp\lbrace 002\rbrace_{hcp} directions. During a pressure cycle, resistivity shows a broad hysteresis of 6.5 GPa, whereas superconductivity, observed between 13 and 31 GPa, remains unaffected. Upon increasing pressure an electronic instability, probably a quantum critical point, is observed at around 19 GPa and, close to this pressure, the superconducting TcT_{c} and the isothermal resistivity (0<T<3000<T<300\,K) attain maximum values. In the superconducting pressure domain, the exponent n=5/3n = 5/3 of the temperature power law of resistivity and its prefactor, which mimics TcT_{c}, indicate that ferromagnetic fluctuations may provide the glue for the Cooper pairs, yielding unconventional superconductivity

    The Josephson critical current in a long mesoscopic S-N-S junction

    Full text link
    We carry out an extensive experimental and theoretical study of the Josephson effect in S-N-S junctions made of a diffusive normal metal (N) embedded between two superconducting electrodes (S). Our experiments are performed on Nb-Cu-Nb junctions with highly-transparent interfaces. We give the predictions of the quasiclassical theory in various regimes on a precise and quantitative level. We describe the crossover between the short and the long junction regimes and provide the temperature dependence of the critical current using dimensionless units eRNIc/ϵceR_{N}I_{c}/\epsilon_{c} and kBT/ϵck_{B}T/\epsilon_{c} where ϵc\epsilon_{c} is the Thouless energy. Experimental and theoretical results are in excellent quantitative agreement.Comment: 5 pages, 4 figures, slighly modified version, publishe
    corecore