2,505 research outputs found

    Using Firm-Level Data to Assess Gender Wage Discrimination in the Belgian Labour Market

    Get PDF
    In this paper we explore a matched employer-employee data set to investigate the presence of gender wage discrimination in the Belgian private economy labour market. We identify and measure gender wage discrimination from firm-level data using a labour index decomposition pioneered by Hellerstein and Neumark (1995), which allows us to compare direct estimates of a gender productivity differential with those of a gender labour costs differential. We take advantage of the panel structure of the data set and identify gender wage discrimination from within-firm variation. Moreover, inspired by recent developments in the production function estimation literature, we address the problem of endogeneity in input choice using a structural production function estimator (Levinsohn and Petrin, 2003). Our results suggest that there is no gender wage discrimination inside private firms located in Belgium.labour productivity; wages; gender discrimination; structural production function estimation; panel data

    ANN Model For SiGe HBTs Constructed From Time-Domain Large-Signal Measurements

    Get PDF
    We construct a large-signal artificial neural network (ANN) model for SiGe HBTs, directly from time-domain large-signal measurements. It is known that HBTs are very sensitive to self-heating and therefore we explicitly study the effect on the model accuracy of the incorporation of the self-heating effect in the behavioural model description. Finally, we show that this type of models can be accurate at extreme operating conditions, where classical compact models start to fail

    Health monitoring of federated future internet experimentation facilities

    Get PDF
    The federation of Future Internet testbeds as envisaged by the Fed4FIRE project is a complex undertaking. It combines a large number of existing, independent testbeds in a single federation, and presents them to the experimenter as if it were a single infrastructure. Operating and using such an infrastructure requires a profound knowledge of the status of the health of the underlying independent systems. Inspired by network monitoring techniques used to operate the Internet today, this paper considers how a centralized health monitoring system can be set up in a federated environment of Future Internet Experimentation Facilities. We show why it is a vital tool for experimenters and First Level Support in the federation, which health monitoring information must be captured, and how this information can be displayed most appropriately

    Residual doses in recent alluvial sediments from the ardenne (S Belgium)

    Full text link
    peer reviewedWe report on our first investigations into the potential of optical dating for determining the rate of river flood sedimentation in the Ardenne region (S Belgium). Two samples collected from a recent alluvial deposit were used to investigate the extent of resetting in different particle size fractions of quartz (4-11 mu m, 63-90 mu m, 90-125 mu m, 125-180 mu m, 180-212 mu m and 212-250 mu m) as well as in polymineral fine (4-11 mu m) grains. Both samples show satisfactory OSL and IRSL characteristics. The IRSL signals from the polymineral fine grains yield an equivalent dose (D-e) of 3-4 Gy, while a D-e of 0.3-0.6 Gy was measured using large aliquots of quartz. Small aliquot analyses of 63-90 mu m and 212-250 mu m quartz grains confirm that the coarser fraction contains more grains with lower D-e's. Furthermore, for a modern sample (< 3 years old), similar to 60% of the aliquots yields a D-e consistent with zero, indicating that these contain only well-bleached grains. These findings suggest that it might be possible to extract the true burial dose from dose distributions measured using small aliquots of coarse-grained (e.g. 212-250 mu m) quartz

    The sequence of the 5.8 S ribosomal RNA of the crustacean <i>Artemia salina</i>. With a proposal for a general secondary structure model for 5.8 S ribosomal RNA

    Get PDF
    We report the primary structure of 5.8 S rRNA from the crustacean Artemia salina. The preparation shows length heterogeneity at the 5′-terminus, but consists of uninterrupted RNA chains, in contrast to some insect 5.8 S rRNAs, which consist of two chains of unequal length separated in the gene by a short spacer. The sequence was aligned with those of 11 other 5.8 S rRNAs and a general secondary structure model derived. It has four helical regions in common with the model of Nazar et al. (J. Biol. Chem. 250, 8591–8597 (1975)), but for a fifth helix a different base pairing scheme was found preferable, and the terminal sequences are presumed to bind to 28 S rRNA instead of binding to each other. In the case of yeast, where both the 5.8 S and 26 S rRNA sequences are known, the existence of five helices in 5.8 S rRNA is shown to be compatible with a 5.8 S - 26 S rRNA interaction model

    Analysis of Coplanar On-Chip Interconnects on Lossy Semiconducting Substrates

    Get PDF
    In this paper, a method for analysis and modeling of coplanar transmission interconnect lines that are placed on top of silicon-silicon oxide substrates is presented. The potential function is expressed by series expansions in terms of solutions of the Laplace equation for each homogeneous region of layered structure. The expansion coefficients of different series are related to each other and to potentials applied to the conductors via boundary conditions. In the plane of conductors, boundary conditions are satisfied at Nd discrete points with Nd being equal to the number of terms in the series expansions. The resulting system of inhomogeneous linear equations is solved by matrix inversion. No iterations are required. A discussion of the calculated line admittance parameters as functions of width of conductors, thickness of the layers, and frequency is given. The interconnect capacitance and conductance per unit length results are given and compared with those obtained using full wave solutions, and good agreement have been obtained in all the cases treated

    Evaluation of resistive-plate-chamber-based TOF-PET applied to in-beam particle therapy monitoring

    Get PDF
    Particle therapy is a highly conformal radiotherapy technique which reduces the dose deposited to the surrounding normal tissues. In order to fully exploit its advantages, treatment monitoring is necessary to minimize uncertainties related to the dose delivery. Up to now, the only clinically feasible technique for the monitoring of therapeutic irradiation with particle beams is Positron Emission Tomography (PET). In this work we have compared a Resistive Plate Chamber (RPC)-based PET scanner with a scintillation-crystal-based PET scanner for this application. In general, the main advantages of the RPC-PET system are its excellent timing resolution, low cost, and the possibility of building large area systems. We simulated a partial-ring scannerbeam monitoring, which has an intrinsically low positron yield compared to diagnostic PET. In addition, for in-beam PET there is a further data loss due to the partial ring configuration. In order to improve the performance of the RPC-based scanner, an improved version of the RPC detector (modifying the thickness of the gas and glass layers), providing a larger sensitivity, has been simulated and compared with an axially extended version of the crystal-based device. The improved version of the RPC shows better performance than the prototype, but the extended version of the crystal-based PET outperforms all other options. based on an RPC prototype under construction within the Fondazione per Adroterapia Oncologica (TERA). For comparison with the crystal-based PET scanner we have chosen the geometry of a commercially available PET scanner, the Philips Gemini TF. The coincidence time resolution used in the simulations takes into account the current achievable values as well as expected improvements of both technologies. Several scenarios (including patient data) have been simulated to evaluate the performance of different scanners. Initial results have shown that the low sensitivity of the RPC hampers its application to hadro

    Exploiting Chordality in Optimization Algorithms for Model Predictive Control

    Full text link
    In this chapter we show that chordal structure can be used to devise efficient optimization methods for many common model predictive control problems. The chordal structure is used both for computing search directions efficiently as well as for distributing all the other computations in an interior-point method for solving the problem. The chordal structure can stem both from the sequential nature of the problem as well as from distributed formulations of the problem related to scenario trees or other formulations. The framework enables efficient parallel computations.Comment: arXiv admin note: text overlap with arXiv:1502.0638
    corecore