2,564 research outputs found
Solving String Field Equations: New Uses for Old Tools
It is argued that the (NS-sector) superstring field equations are integrable,
i.e. their solutions are obtainable from linear equations. We adapt the
25-year-old solution-generating "dressing" method and reduce the construction
of nonperturbative superstring configurations to a specific cohomology problem.
The application to vacuum superstring field theory is outlined.Comment: Talk presented by O.L. at the 35th International Symposium Ahrenshoop
on the Theory of Elementary Particles, Berlin, Germany, 26-30 Aug 2002; v2:
minor corrections, textheight adjuste
Mixed state geometric phases, entangled systems, and local unitary transformations
The geometric phase for a pure quantal state undergoing an arbitrary
evolution is a ``memory'' of the geometry of the path in the projective Hilbert
space of the system. We find that Uhlmann's geometric phase for a mixed quantal
state undergoing unitary evolution not only depends on the geometry of the path
of the system alone but also on a constrained bi-local unitary evolution of the
purified entangled state. We analyze this in general, illustrate it for the
qubit case, and propose an experiment to test this effect. We also show that
the mixed state geometric phase proposed recently in the context of
interferometry requires uni-local transformations and is therefore essentially
a property of the system alone.Comment: minor changes, journal reference adde
New Impulses in the Forming of Magnesium Sheet Metals
Owing to growing demands by customers for comfort and safety in cars, the weight of the respective individual automobile increases constantly. Hence, the role of construction materials, such as aluminium and magnesium alloys in car body production becomes ever more important. Especially magnesium is highly attractive because of its small density, its positive mechanic-technological properties, and the ready availability as raw material. It is known that magnesium has a reduced formability at room temperature and needs to be heated up to temperatures at around 300°C to be deformable with technologically useful forming rates. So therefore to form sheets made of magnesium alloys, the workpiece has to be heated previously. The idea of combining the processes "inductive heating" and "pulsed magnetic forming" led to the following research work. The aim was to develop a tool that combines both processes to be able to heat up the forming zone at the workpiece to a significant temperature and to form it afterwards without changing the tool. However, in order to manufacture sheet metal components from magnesium innovative manufacturing technologies are necessary. The Institute for Machine Tools and Factory Management (IWF) carries out research and develops solutions in the field of pulsed magnetic forming
Travelling-waves consistent with turbulence-driven secondary flow in a square duct
We present numerically determined travelling-wave solutions for
pressure-driven flow through a straight duct with a square cross-section. This
family of solutions represents typical coherent structures (a staggered array
of counter-rotating streamwise vortices and an associated low-speed streak) on
each wall. Their streamwise average flow in the cross-sectional plane
corresponds to an eight vortex pattern much alike the secondary flow found in
the turbulent regime
Asymptotics of Quantum Relative Entropy From Representation Theoretical Viewpoint
In this paper it was proved that the quantum relative entropy can be asymptotically attained by Kullback Leibler divergences of
probabilities given by a certain sequence of POVMs. The sequence of POVMs
depends on , but is independent of the choice of .Comment: LaTeX2e. 8 pages. The title was changed from "Asymptotic Attainment
for Quantum Relative Entropy
Analogue of cosmological particle creation in an ion trap
We study phonons in a dynamical chain of ions confined by a trap with a
time-dependent (axial) potential strength and demonstrate that they behave in
the same way as quantum fields in an expanding/contracting universe. Based on
this analogy, we present a scheme for the detection of the analogue of
cosmological particle creation which should be feasible with present-day
technology. In order to test the quantum nature of the particle creation
mechanism and to distinguish it from classical effects such as heating, we
propose to measure the two-phonon amplitude via the red side-band
and to compare it with the one-phonon amplitude ( red side-band).
PACS: 04.62.+v, 98.80.-k, 42.50.Vk, 32.80.Pj.Comment: 4 pages, 2 figure
Geometric observation for the Bures fidelity between two states of a qubit
In this Brief Report, we present a geometric observation for the Bures
fidelity between two states of a qubit.Comment: 4 pages, 1 figure, RevTex, Accepted by Phys. Rev.
Connections and Metrics Respecting Standard Purification
Standard purification interlaces Hermitian and Riemannian metrics on the
space of density operators with metrics and connections on the purifying
Hilbert-Schmidt space. We discuss connections and metrics which are well
adopted to purification, and present a selected set of relations between them.
A connection, as well as a metric on state space, can be obtained from a metric
on the purification space. We include a condition, with which this
correspondence becomes one-to-one. Our methods are borrowed from elementary
*-representation and fibre space theory. We lift, as an example, solutions of a
von Neumann equation, write down holonomy invariants for cyclic ones, and ``add
noise'' to a curve of pure states.Comment: Latex, 27 page
Time-resolved density correlations as probe of squeezing in toroidal Bose-Einstein condensates
I study the evolution of mean field and linear quantum fluctuations in a
toroidal Bose-Einstein condensate, whose interaction strength is quenched from
a finite (repulsive) value to zero. The azimuthal equal-time density-density
correlation function is calculated and shows temporal oscillations with twice
the (final) excitation frequencies after the transition. These oscillations are
a direct consequence of positive and negative frequency mixing during
non-adiabatic evolution. I will argue that a time-resolved measurement of the
equal-time density correlator might be used to calculate the moduli of the
Bogoliubov coefficients and thus the amount of squeezing imposed on a mode,
i.e., the number of atoms excited out of the condensate.Comment: 18 pages, IOP styl
- …
