654 research outputs found
Recent Progress of RF Cavity Study at Mucool Test Area
In order to develop an RF cavity that is applicable for a muon beam cooling
channel, a new facility, called Mucool Test Area (MTA) has been built at
Fermilab. MTA is a unique facility whose purpose is to test RF cavities in
various conditions. There are 201 and 805 MHz high power sources, a 4-Tesla
solenoid magnet, a cryogenic system including a Helium liquifier, an explosion
proof apparatus to operate gaseous/liquid Hydrogen, and a beam transport line
to send an intense H- beam from the Fermilab Linac accelerator to the MTA hall.
Recent activities at MTA will be discussed in this document.Comment: 4 pp. 13th International Workshop on Neutrino Factories, Superbeams
and Beta beams (NuFact11) 1-6 Aug 2011: Geneva, Switzerlan
MONTE CARLO SIMULATIONS OF MUON PRODUCTION
Muon production requirements for a muon collider are presented. Production of
muons from pion decay is studied. Lithium lenses and solenoids are considered
for focussing pions from a target, and for matching the pions into a decay
channel. Pion decay channels of alternating quadrupoles and long solenoids are
compared. Monte Carlo simulations are presented for production of by protons over a wide energy range, and criteria for
choosing the best proton energy are discussed.Comment: Latex uses mu95.sty, 19 pages, 5 postscript figures. A postscript
file can be seen at URL http://www.cap.bnl.gov/~cap/mumu/important.html
Search for Publication
Muon Colliders
Muon Colliders have unique technical and physics advantages and disadvantages
when compared with both hadron and electron machines. They should thus be
regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high
luminosity \mumu colliders, and of a 0.5 TeV lower luminosity demonstration
machine. We discuss the various systems in such muon colliders, starting from
the proton accelerator needed to generate the muons and proceeding through muon
cooling, acceleration and storage in a collider ring. Problems of detector
background are also discussed.Comment: 28 pages, with 12 postscript figures. To be published Proceedings of
the 9th Advanced ICFA Beam Dynamics Workshop, AIP Pres
Antiproton Production in Collisions at AGS Energies
Inclusive and semi-inclusive measurements are presented for antiproton
() production in proton-nucleus collisions at the AGS. The inclusive
yields per event increase strongly with increasing beam energy and decrease
slightly with increasing target mass. The yield in 17.5 GeV/c p+Au
collisions decreases with grey track multiplicity, , for ,
consistent with annihilation within the target nucleus. The relationship
between and the number of scatterings of the proton in the nucleus is
used to estimate the annihilation cross section in the nuclear
medium. The resulting cross section is at least a factor of five smaller than
the free annihilation cross section when assuming a small or
negligible formation time. Only with a long formation time can the data be
described with the free annihilation cross section.Comment: 8 pages, 6 figure
The RFOFO Ionization Cooling Ring for Muons
Practical ionization cooling rings could lead to lower cost or improved
performance in neutrino factory or muon collider designs. The ring modeled here
uses realistic three-dimensional fields. The performance of the ring compares
favorably with the linear cooling channel used in the second US Neutrino
Factory Study. The normalized 6D emittance of an ideal ring is decreased by a
factor of approximately 240, compared with a factor of only 15 for the linear
channel. We also examine such \textit{real-world} effects as windows on the
absorbers and rf cavities and leaving empty lattice cells for injection and
extraction. For realistic conditions the ring decreases the normalized 6D
emittance by a factor of 49.Comment: 27 pages, 18 figures and 5 tables. Submitted to Phys. Rev. ST-A
Characterisation of the muon beams for the Muon Ionisation Cooling Experiment
A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE
- …
