654 research outputs found

    Recent Progress of RF Cavity Study at Mucool Test Area

    Full text link
    In order to develop an RF cavity that is applicable for a muon beam cooling channel, a new facility, called Mucool Test Area (MTA) has been built at Fermilab. MTA is a unique facility whose purpose is to test RF cavities in various conditions. There are 201 and 805 MHz high power sources, a 4-Tesla solenoid magnet, a cryogenic system including a Helium liquifier, an explosion proof apparatus to operate gaseous/liquid Hydrogen, and a beam transport line to send an intense H- beam from the Fermilab Linac accelerator to the MTA hall. Recent activities at MTA will be discussed in this document.Comment: 4 pp. 13th International Workshop on Neutrino Factories, Superbeams and Beta beams (NuFact11) 1-6 Aug 2011: Geneva, Switzerlan

    MONTE CARLO SIMULATIONS OF MUON PRODUCTION

    Full text link
    Muon production requirements for a muon collider are presented. Production of muons from pion decay is studied. Lithium lenses and solenoids are considered for focussing pions from a target, and for matching the pions into a decay channel. Pion decay channels of alternating quadrupoles and long solenoids are compared. Monte Carlo simulations are presented for production of πμ\pi \rightarrow \mu by protons over a wide energy range, and criteria for choosing the best proton energy are discussed.Comment: Latex uses mu95.sty, 19 pages, 5 postscript figures. A postscript file can be seen at URL http://www.cap.bnl.gov/~cap/mumu/important.html Search for Publication

    Muon Colliders

    Full text link
    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity \mumu colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.Comment: 28 pages, with 12 postscript figures. To be published Proceedings of the 9th Advanced ICFA Beam Dynamics Workshop, AIP Pres

    Antiproton Production in p+Ap+A Collisions at AGS Energies

    Full text link
    Inclusive and semi-inclusive measurements are presented for antiproton (pˉ\bar{p}) production in proton-nucleus collisions at the AGS. The inclusive yields per event increase strongly with increasing beam energy and decrease slightly with increasing target mass. The pˉ\bar{p} yield in 17.5 GeV/c p+Au collisions decreases with grey track multiplicity, NgN_g, for Ng>0N_g>0, consistent with annihilation within the target nucleus. The relationship between NgN_g and the number of scatterings of the proton in the nucleus is used to estimate the pˉ\bar{p} annihilation cross section in the nuclear medium. The resulting cross section is at least a factor of five smaller than the free pˉp\bar{p}-p annihilation cross section when assuming a small or negligible formation time. Only with a long formation time can the data be described with the free pˉp\bar{p}-p annihilation cross section.Comment: 8 pages, 6 figure

    The RFOFO Ionization Cooling Ring for Muons

    Full text link
    Practical ionization cooling rings could lead to lower cost or improved performance in neutrino factory or muon collider designs. The ring modeled here uses realistic three-dimensional fields. The performance of the ring compares favorably with the linear cooling channel used in the second US Neutrino Factory Study. The normalized 6D emittance of an ideal ring is decreased by a factor of approximately 240, compared with a factor of only 15 for the linear channel. We also examine such \textit{real-world} effects as windows on the absorbers and rf cavities and leaving empty lattice cells for injection and extraction. For realistic conditions the ring decreases the normalized 6D emittance by a factor of 49.Comment: 27 pages, 18 figures and 5 tables. Submitted to Phys. Rev. ST-A

    Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Get PDF
    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE
    corecore