13,842 research outputs found
Application of intersatellite links to domestic satellite systems
The results of a study on intersatellite link (ISL) applications for domestic satellite communications are presented. It was determined if any technical, economic, or performance benefits could be gained by introducing intersatellite links into a domestic satellite communication network. Several key systems issues of domestic ISL's are addressed. These include the effect of a skewed traffic distribution on the selection of ISL satellite orbit locations, tolerable satellite spacing, and crosslink traffic-handling requirements. An ISL technology assessment is made by performing a parametric link analysis for several microwave and optical implementations. The impact of the crosslink on the end-to-end link performance is investigated for both regenerative and nonregenerative ISL architectures. A comparison is made between single satellite systems operating at C-, and Ku-bands and the corresponding ISL systems in terms of ground segment cost, space segment cost, and net link performance. Results indicate that ISL's can effectively expand the CONUS orbital arc, with a 60 GHz ISL implementation being the most attractive
Empirical modeling of the quiet time nightside magnetosphere
Empirical modeling of plasma pressure and magnetic field for the quiet time nightside magnetosphere is investigated. Two models are constructed for this study. One model, referred to here as T89R, is basically the magnetic field model of Tsyganenko (1989) but is modified by the addition of an inner eastward ring current at a radial distance of ∼3 RE as suggested by observation. The other is a combination of the T89R model and the long version of the magnetic field model of Tsyganenko (1987) such that the former dominates the magnetic field in the inner magnetosphere, whereas the latter prevails in the distant tail. The distribution of plasma pressure, which is required to balance the magnetic force for each of these two field models, is computed along the tail axis in the midnight meridian. The occurrence of pressure anisotropy in the inner magnetospheric region is also taken into account by determining an empirical fit to the observed plasma pressure anisotropy. This effort is the first attempt to obtain the plasma pressure distribution in force equilibrium with magnetic stresses from an empirical field model with the inclusion of pressure anisotropy. The inclusion of pressure anisotropy alters the plasma pressure by as much as a factor of ∼3 in the inner magnetosphere. The deduced plasma pressure profile along the tail axis is found to be in good agreement with the observed quiet time plasma pressure for geocentric distances between ∼2 and ∼35 RE
Hardware for digitally controlled scanned probe microscopes
The design and implementation of a flexible and modular digital control and data acquisition system for scanned probe microscopes (SPMs) is presented. The measured performance of the system shows it to be capable of 14-bit data acquisition at a 100-kHz rate and a full 18-bit output resolution resulting in less than 0.02-Å rms position noise while maintaining a scan range in excess of 1 µm in both the X and Y dimensions. This level of performance achieves the goal of making the noise of the microscope control system an insignificant factor for most experiments. The adaptation of the system to various types of SPM experiments is discussed. Advances in audio electronics and digital signal processors have made the construction of such high performance systems possible at low cost
Data report: Seismic structure beneath the North Cascadia drilling transect of IODP Expedition 311
Between 1999 and 2004, new seismic data became available for the study of gas hydrates on the northern Cascadia margin. These data consist of multi- and single-channel data with two- and partly three-dimensional subsurface coverage and were acquired and used in support of the proposal for Integrated Ocean Drilling Program (IODP) Expedition 311 carried out in 2005. The working area lies across the continental slope off the coast of central Vancouver Island, British Columbia, Canada, with water depths ranging from 2600 m in the trench to 500 m on the upper slope, where it is well above the minimum depth for gas hydrate stability. This paper gives the details of the data acquisition and conventional processing and then focuses on describing the new data at six individual sites along a transect across the gas hydrate zone. Five of the sites were drilled during the Expedition 311. The transect of sites commences at the almost undeformed incoming sediments seaward of the region where gas hydrates are observed; these ocean basin sediments were drilled at a site 40 km southeast during Ocean Drilling Program (ODP) Leg 146. The transect continues up the continental slope into the area of hydrate stability, with a site on top of the frontal accretionary ridge where normal faulting indicates margin parallel extension; a site in the first slope basin overlying a buried ridge near a reflectivity wipe-out zone; a site adjacent to Site 889 of Leg 146 and therefore acting as a tie hole; the most landward site at the shallowest end of the hydrate stability field; and a cold vent site at one of several blank zones close to a bright spot region in the seismic records
Morphology and the gradient of a symmetric potential predicts gait transitions of dogs
Gaits and gait transitions play a central role in the movement of animals. Symmetry is thought to govern the structure of the nervous system, and constrain the limb motions of quadrupeds. We quantify the symmetry of dog gaits with respect to combinations of bilateral, fore-aft, and spatio-temporal symmetry groups. We tested the ability of symmetries to model motion capture data of dogs walking, trotting and transitioning between those gaits. Fully symmetric models performed comparably to asymmetric with only a 22% increase in the residual sum of squares and only one-quarter of the parameters. This required adding a spatio-temporal shift representing a lag between fore and hind limbs. Without this shift, the symmetric model residual sum of squares was 1700% larger. This shift is related to (linear regression, n = 5, p = 0.0328) dog morphology. That this symmetry is respected throughout the gaits and transitions indicates that it generalizes outside a single gait. We propose that relative phasing of limb motions can be described by an interaction potential with a symmetric structure. This approach can be extended to the study of interaction of neurodynamic and kinematic variables, providing a system-level model that couples neuronal central pattern generator networks and mechanical models
Four-dimensional topological Einstein-Maxwell gravity
The complete on-shell action of topological Einstein-Maxwell gravity in
four-dimensions is presented. It is shown explicitly how this theory for SU(2)
holonomy manifolds arises from four-dimensional Euclidean N=2 supergravity. The
twisted local BRST symmetries and twisted local Lorentz symmetries are given
and the action and stress tensor are shown to be BRST-exact. A set of
BRST-invariant topological operators is given. The vector and antisymmetric
tensor twisted supersymmetries and their algebra are also found.Comment: Published version. Expanded discussion of new results in the
introduction and some clarifying remarks added in later sections. 22 pages,
uses phyzz
Charge exchange contribution to the decay of the ring current, measured by energetic neutral atoms (ENAs)
In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases
- …
