1,059 research outputs found

    Magnetic quantification of urban pollution sources in atmospheric particulate matter

    Get PDF
    A new method is presented for fast quantification of urban pollution sources in atmospheric particulate matter (PM). The remanent magnetization of PM samples collected in Switzerland at sites with different exposures to pollution sources is analysed. The coercivity distribution of each sample is calculated from detailed demagnetization curves of anhysteretic remanent magnetization (ARM) and is modelled using a linear combination of appropriate functions which represent the contribution of different sources of magnetic minerals to the total magnetization. Two magnetic components, C1 and C2, are identified in all samples. The low-coercivity component C1 predominates in less polluted sites, whereas the concentration of the higher-coercivity component C2 is large in urban areas. The same sites were monitored independently by Hüglin using detailed chemical analysis and a quantitative source attribution of the PM. His results are compared with the magnetic component analysis. The absolute and relative magnetic contributions of component C2 correlate very well with absolute and relative mass contributions of exhaust emissions, respectively. Traffic is the most important PM pollution source in Switzerland: it includes exhaust emissions and abrasion products released by vehicle brakes. Component C2 and traffic-related PM sources correlate well, which is encouraging for the implementation of non-destructive magnetic methods as an economic alternative to chemical analysis when mapping urban dust pollutio

    CDCP1 (CUB domain containing protein 1)

    Get PDF
    Review on CDCP1 (CUB domain containing protein 1), with data on DNA, on the protein encoded, and where the gene is implicated

    Changes in insulin like growth factors, myostatin and vascular endothelial growth factor in rat musculus latissimus dorsi by poly 3-hydroxybutyrate implants

    Get PDF
    The present study aimed at researching the synergistic effect between an ectopic bone substitute and surrounding muscle tissue. To describe this effect, changes of insulin like growth factors (IGF1, IGF2), myostatin (GDF8) and vascular endothelial growth factor (VEGF) mRNA content of 12 Wistar-King rats musculus latissimus dorsi with implanted poly-3-hydroxybutyrate (PHB) scaffold were examined after 6 and 12 weeks. At each time interval six rats were killed and implants and surrounding tissues prepared for genetic evaluation. Eight rats without any implants served as controls. RNAwas extracted from homogenized muscle tissue and reverse transcribed. Changes in mRNA content were measured by Real-Time PCR using specific primers for IGF1, IGF2, GDF8 and VEGF. Comparing the level of VEGF mRNA in muscle after 6 and 12 weeks to the controls, we could assess a significant increase of VEGF gene expression (

    Magneto-Optical and Multiferroic Properties of Transition-Metal (Fe, Co, or Ni)-Doped ZnO Layers Deposited by ALD

    Get PDF
    ZnO doped with transition metals (Co, Fe, or Ni) that have non-compensated electron spins attracts particular interest as it can induce various magnetic phenomena and behaviors. The advanced atomic layer deposition (ALD) technique makes it possible to obtain very thin layers of doped ZnO with controllable thicknesses and compositions that are compatible with the main microelectronic technologies, which further boosts the interest. The present study provides an extended analysis of the magneto optical MO Kerr effect and the dielectric properties of (Co, Fe, or Ni)-doped ZnO films prepared by ALD. The structural, magneto optical, and dielectric properties were considered in relation to the technological details of the ALD process and the corresponding dopant effects. All doped samples show a strong MO Kerr behavior with a substantial magnetization response and very high values of the Kerr polarization angle, especially in the case of ZnO/Fe. In addition, the results give evidence that Fe-doped ZnO also demonstrates a ferroelectric behavior. In this context, the observed rich and versatile physical nature and functionality open up new prospects for the application of these nanostructured materials in advanced electronic, spintronic, and optical devices

    Magnetic quantification of urban pollution sources in atmospheric particulate matter

    Get PDF
    A new method is presented for fast quantification of urban pollution sources in atmospheric particulate matter (PM). The remanent magnetization of PM samples collected in Switzerland at sites with different exposures to pollution sources is analysed. The coercivity distribution of each sample is calculated from detailed demagnetization curves of anhysteretic remanent magnetization (ARM) and is modelled using a linear combination of appropriate functions which represent the contribution of different sources of magnetic minerals to the total magnetization. Two magnetic components, C1 and C2, are identified in all samples. The low-coercivity component C1 predominates in less polluted sites, whereas the concentration of the higher-coercivity component C2 is large in urban areas. The same sites were monitored independently by Hüglin using detailed chemical analysis and a quantitative source attribution of the PM. His results are compared with the magnetic component analysis. The absolute and relative magnetic contributions of component C2 correlate very well with absolute and relative mass contributions of exhaust emissions, respectively. Traffic is the most important PM pollution source in Switzerland: it includes exhaust emissions and abrasion products released by vehicle brakes. Component C2 and traffic-related PM sources correlate well, which is encouraging for the implementation of non-destructive magnetic methods as an economic alternative to chemical analysis when mapping urban dust pollution. © 2004 RAS

    Challenges and recommendations for magnetic hyperthermia characterization measurements

    Get PDF
    PURPOSE: The localized heating of magnetic nanoparticles (MNPs) via the application of time-varying magnetic fields - a process known as magnetic field hyperthermia (MFH) - can greatly enhance existing options for cancer treatment; but for broad clinical uptake its optimization, reproducibility and safety must be comprehensively proven. As part of this effort, the quantification of MNP heating - characterized by the specific loss power (SLP), measured in W/g, or by the intrinsic loss power (ILP), in Hm2/kg - is frequently reported. However, in SLP/ILP measurements to date, the apparatus, the analysis techniques and the field conditions used by different researchers have varied greatly, leading to questions as to the reproducibility of the measurements. MATERIALS AND METHODS: An interlaboratory study (across N = 21 European sites) of calorimetry measurements that constitutes a snapshot of the current state-of-the-art within the MFH community has been undertaken. Identical samples of two stable nanoparticle systems were distributed to all participating laboratories. Raw measurement data as well as the results of in-house analysis techniques were collected along with details of the measurement apparatus used. Raw measurement data was further reanalyzed by universal application of the corrected-slope method to examine relative influences of apparatus and results processing. RESULTS: The data show that although there is very good intralaboratory repeatability, the overall interlaboratory measurement accuracy is poor, with the consolidated ILP data having standard deviations on the mean of ca. ± 30% to ± 40%. There is a strong systematic component to the uncertainties, and a clear rank correlation between the measuring laboratory and the ILP. Both of these are indications of a current lack of normalization in this field. A number of possible sources of systematic uncertainties are identified, and means determined to alleviate or minimize them. However, no single dominant factor was identified, and significant work remains to ascertain and remove the remaining uncertainty sources. CONCLUSION: We conclude that the study reveals a current lack of harmonization in MFH characterization of MNPs, and highlights the growing need for standardized, quantitative characterization techniques for this emerging medical technology
    • …
    corecore