1,169 research outputs found
Local formation of nitrogen-vacancy centers in diamond by swift heavy ions
We exposed nitrogen-implanted diamonds to beams of swift uranium and gold
ions (~1 GeV) and find that these irradiations lead directly to the formation
of nitrogen vacancy (NV) centers, without thermal annealing. We compare the
photoluminescence intensities of swift heavy ion activated NV- centers to those
formed by irradiation with low-energy electrons and by thermal annealing. NV-
yields from irradiations with swift heavy ions are 0.1 of yields from low
energy electrons and 0.02 of yields from thermal annealing. We discuss possible
mechanisms of NV-center formation by swift heavy ions such as electronic
excitations and thermal spikes. While forming NV centers with low efficiency,
swift heavy ions enable the formation of three dimensional NV- assemblies over
relatively large distances of tens of micrometers. Further, our results show
that NV-center formation is a local probe of (partial) lattice damage
relaxation induced by electronic excitations from swift heavy ions in diamond.Comment: to be published in Journal of Applied Physic
Preferred foliation effects in Quantum General Relativity
We investigate the infrared (IR) effects of Lorentz violating terms in the
gravitational sector using functional renormalization group methods similar to
Reuter and collaborators. The model we consider consists of pure quantum
gravity coupled to a preferred foliation, described effectively via a scalar
field with non-standard dynamics. We find that vanishing Lorentz violation is a
UV attractive fixed-point of this model in the local potential approximation.
Since larger truncations may lead to differing results, we study as a first
example effects of additional matter fields on the RG running of the Lorentz
violating term and provide a general argument why they are small.Comment: 12 pages, no figures, compatible with published versio
Processing Issues in Top-Down Approaches to Quantum Computer Development in Silicon
We describe critical processing issues in our development of single atom
devices for solid-state quantum information processing. Integration of single
31P atoms with control gates and single electron transistor (SET) readout
structures is addressed in a silicon-based approach. Results on electrical
activation of low energy (15 keV) P implants in silicon show a strong dose
effect on the electrical activation fractions. We identify dopant segregation
to the SiO2/Si interface during rapid thermal annealing as a dopant loss
channel and discuss measures of minimizing it. Silicon nanowire SET pairs with
nanowire width of 10 to 20 nm are formed by electron beam lithography in SOI.
We present first results from Coulomb blockade experiments and discuss issues
of control gate integration for sub-40nm gate pitch levels
Spin Coherence and N ESEEM Effects of Nitrogen-Vacancy Centers in Diamond with X-band Pulsed ESR
Pulsed ESR experiments are reported for ensembles of negatively-charged
nitrogen-vacancy centers (NV) in diamonds at X-band magnetic fields
(280-400 mT) and low temperatures (2-70 K). The NV centers in synthetic
type IIb diamonds (nitrogen impurity concentration ~ppm) are prepared with
bulk concentrations of cm to cm
by high-energy electron irradiation and subsequent annealing. We find that a
proper post-radiation anneal (1000C for 60 mins) is critically
important to repair the radiation damage and to recover long electron spin
coherence times for NVs. After the annealing, spin coherence times of T~ms at 5~K are achieved, being only limited by C nuclear spectral
diffusion in natural abundance diamonds. At X-band magnetic fields, strong
electron spin echo envelope modulation (ESEEM) is observed originating from the
central N nucleus. The ESEEM spectral analysis allows for accurate
determination of the N nuclear hypefine and quadrupole tensors. In
addition, the ESEEM effects from two proximal C sites (second-nearest
neighbor and fourth-nearest neighbor) are resolved and the respective C
hyperfine coupling constants are extracted.Comment: 10 pages, 5 figure
Reaching the quantum limit of sensitivity in electron spin resonance
We report pulsed electron-spin resonance (ESR) measurements on an ensemble of
Bismuth donors in Silicon cooled at 10mK in a dilution refrigerator. Using a
Josephson parametric microwave amplifier combined with high-quality factor
superconducting micro-resonators cooled at millikelvin temperatures, we improve
the state-of-the-art sensitivity of inductive ESR detection by nearly 4 orders
of magnitude. We demonstrate the detection of 1700 bismuth donor spins in
silicon within a single Hahn echo with unit signal-to-noise (SNR) ratio,
reduced to just 150 spins by averaging a single Carr-Purcell-Meiboom-Gill
sequence. This unprecedented sensitivity reaches the limit set by quantum
fluctuations of the electromagnetic field instead of thermal or technical
noise, which constitutes a novel regime for magnetic resonance.Comment: Main text : 10 pages, 4 figures. Supplementary text : 16 pages, 8
figure
Detection of low energy single ion impacts in micron scale transistors at room temperature
We report the detection of single ion impacts through monitoring of changes
in the source-drain currents of field effect transistors (FET) at room
temperature. Implant apertures are formed in the interlayer dielectrics and
gate electrodes of planar, micro-scale FETs by electron beam assisted etching.
FET currents increase due to the generation of positively charged defects in
gate oxides when ions (121Sb12+, 14+, Xe6+; 50 to 70 keV) impinge into channel
regions. Implant damage is repaired by rapid thermal annealing, enabling
iterative cycles of device doping and electrical characterization for
development of single atom devices and studies of dopant fluctuation effects
Short-Pulse, Compressed Ion Beams at the Neutralized Drift Compression Experiment
We have commenced experiments with intense short pulses of ion beams on the
Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley
National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half
maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration
and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long
drift compression section following the last accelerator cell. A
short-focal-length solenoid focuses the beam in the presence of the volumetric
plasma that is near the target. In the accelerator, the line-charge density
increases due to the velocity ramp imparted on the beam bunch. The scientific
topics to be explored are warm dense matter, the dynamics of radiation damage
in materials, and intense beam and beam-plasma physics including select topics
of relevance to the development of heavy-ion drivers for inertial fusion
energy. Below the transition to melting, the short beam pulses offer an
opportunity to study the multi-scale dynamics of radiation-induced damage in
materials with pump-probe experiments, and to stabilize novel metastable phases
of materials when short-pulse heating is followed by rapid quenching. First
experiments used a lithium ion source; a new plasma-based helium ion source
shows much greater charge delivered to the target.Comment: 4 pages, 2 figures, 1 table. Submitted to the proceedings for the
Ninth International Conference on Inertial Fusion Sciences and Applications,
IFSA 201
- …
