1,169 research outputs found

    Local formation of nitrogen-vacancy centers in diamond by swift heavy ions

    Full text link
    We exposed nitrogen-implanted diamonds to beams of swift uranium and gold ions (~1 GeV) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV- centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV- yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV-center formation by swift heavy ions such as electronic excitations and thermal spikes. While forming NV centers with low efficiency, swift heavy ions enable the formation of three dimensional NV- assemblies over relatively large distances of tens of micrometers. Further, our results show that NV-center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.Comment: to be published in Journal of Applied Physic

    Preferred foliation effects in Quantum General Relativity

    Full text link
    We investigate the infrared (IR) effects of Lorentz violating terms in the gravitational sector using functional renormalization group methods similar to Reuter and collaborators. The model we consider consists of pure quantum gravity coupled to a preferred foliation, described effectively via a scalar field with non-standard dynamics. We find that vanishing Lorentz violation is a UV attractive fixed-point of this model in the local potential approximation. Since larger truncations may lead to differing results, we study as a first example effects of additional matter fields on the RG running of the Lorentz violating term and provide a general argument why they are small.Comment: 12 pages, no figures, compatible with published versio

    Processing Issues in Top-Down Approaches to Quantum Computer Development in Silicon

    Get PDF
    We describe critical processing issues in our development of single atom devices for solid-state quantum information processing. Integration of single 31P atoms with control gates and single electron transistor (SET) readout structures is addressed in a silicon-based approach. Results on electrical activation of low energy (15 keV) P implants in silicon show a strong dose effect on the electrical activation fractions. We identify dopant segregation to the SiO2/Si interface during rapid thermal annealing as a dopant loss channel and discuss measures of minimizing it. Silicon nanowire SET pairs with nanowire width of 10 to 20 nm are formed by electron beam lithography in SOI. We present first results from Coulomb blockade experiments and discuss issues of control gate integration for sub-40nm gate pitch levels

    Spin Coherence and 14^{14}N ESEEM Effects of Nitrogen-Vacancy Centers in Diamond with X-band Pulsed ESR

    Full text link
    Pulsed ESR experiments are reported for ensembles of negatively-charged nitrogen-vacancy centers (NV^-) in diamonds at X-band magnetic fields (280-400 mT) and low temperatures (2-70 K). The NV^- centers in synthetic type IIb diamonds (nitrogen impurity concentration <1<1~ppm) are prepared with bulk concentrations of 210132\cdot 10^{13} cm3^{-3} to 410144\cdot 10^{14} cm3^{-3} by high-energy electron irradiation and subsequent annealing. We find that a proper post-radiation anneal (1000^\circC for 60 mins) is critically important to repair the radiation damage and to recover long electron spin coherence times for NV^-s. After the annealing, spin coherence times of T2=0.74_2 = 0.74~ms at 5~K are achieved, being only limited by 13^{13}C nuclear spectral diffusion in natural abundance diamonds. At X-band magnetic fields, strong electron spin echo envelope modulation (ESEEM) is observed originating from the central 14^{14}N nucleus. The ESEEM spectral analysis allows for accurate determination of the 14^{14}N nuclear hypefine and quadrupole tensors. In addition, the ESEEM effects from two proximal 13^{13}C sites (second-nearest neighbor and fourth-nearest neighbor) are resolved and the respective 13^{13}C hyperfine coupling constants are extracted.Comment: 10 pages, 5 figure

    Reaching the quantum limit of sensitivity in electron spin resonance

    Get PDF
    We report pulsed electron-spin resonance (ESR) measurements on an ensemble of Bismuth donors in Silicon cooled at 10mK in a dilution refrigerator. Using a Josephson parametric microwave amplifier combined with high-quality factor superconducting micro-resonators cooled at millikelvin temperatures, we improve the state-of-the-art sensitivity of inductive ESR detection by nearly 4 orders of magnitude. We demonstrate the detection of 1700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise (SNR) ratio, reduced to just 150 spins by averaging a single Carr-Purcell-Meiboom-Gill sequence. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance.Comment: Main text : 10 pages, 4 figures. Supplementary text : 16 pages, 8 figure

    Detection of low energy single ion impacts in micron scale transistors at room temperature

    Get PDF
    We report the detection of single ion impacts through monitoring of changes in the source-drain currents of field effect transistors (FET) at room temperature. Implant apertures are formed in the interlayer dielectrics and gate electrodes of planar, micro-scale FETs by electron beam assisted etching. FET currents increase due to the generation of positively charged defects in gate oxides when ions (121Sb12+, 14+, Xe6+; 50 to 70 keV) impinge into channel regions. Implant damage is repaired by rapid thermal annealing, enabling iterative cycles of device doping and electrical characterization for development of single atom devices and studies of dopant fluctuation effects

    Short-Pulse, Compressed Ion Beams at the Neutralized Drift Compression Experiment

    Full text link
    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted on the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.Comment: 4 pages, 2 figures, 1 table. Submitted to the proceedings for the Ninth International Conference on Inertial Fusion Sciences and Applications, IFSA 201
    corecore