848 research outputs found

    Classifying network attack scenarios using an ontology

    Get PDF
    This paper presents a methodology using network attack ontology to classify computer-based attacks. Computer network attacks differ in motivation, execution and end result. Because attacks are diverse, no standard classification exists. If an attack could be classified, it could be mitigated accordingly. A taxonomy of computer network attacks forms the basis of the ontology. Most published taxonomies present an attack from either the attacker's or defender's point of view. This taxonomy presents both views. The main taxonomy classes are: Actor, Actor Location, Aggressor, Attack Goal, Attack Mechanism, Attack Scenario, Automation Level, Effects, Motivation, Phase, Scope and Target. The "Actor" class is the entity executing the attack. The "Actor Location" class is the Actor‟s country of origin. The "Aggressor" class is the group instigating an attack. The "Attack Goal" class specifies the attacker‟s goal. The "Attack Mechanism" class defines the attack methodology. The "Automation Level" class indicates the level of human interaction. The "Effects" class describes the consequences of an attack. The "Motivation" class specifies incentives for an attack. The "Scope" class describes the size and utility of the target. The "Target" class is the physical device or entity targeted by an attack. The "Vulnerability" class describes a target vulnerability used by the attacker. The "Phase" class represents an attack model that subdivides an attack into different phases. The ontology was developed using an "Attack Scenario" class, which draws from other classes and can be used to characterize and classify computer network attacks. An "Attack Scenario" consists of phases, has a scope and is attributed to an actor and aggressor which have a goal. The "Attack Scenario" thus represents different classes of attacks. High profile computer network attacks such as Stuxnet and the Estonia attacks can now be been classified through the “Attack Scenario” class

    Recent Improvements in the Tracking Code Placet

    Get PDF
    The tracking code Placet has recently undergone several improvements. A redesign of its internal data structures and a new user interface based on the mathematical toolbox Octave considerably expanded its simulation capabilities. Several new lattice elements, optimization algorithms and physics processes were added to allow for more complete start-to-end simulations. Finally, the use of the AML language and the Universal Parser Library have extended its interfacing capability. A review of these new features is presented in this paper

    Studies on charge production from Cs2Te photocathodes in the PITZ L-band normal conducting radio frequency photo injector

    Full text link
    This paper discusses the behavior of electron bunch charge produced in an L-band normal conducting radio frequency cavity (RF gun) from Cs2Te photocathodes illuminated with ps-long UV laser pulses when the laser transverse distribution consists of a flat-top core with Gaussian-like decaying halo. The produced charge shows a linear dependence at low laser pulse energies as expected in the quantum efficiency limited emission regime, while its dependence on laser pulse energy is observed to be much weaker for higher values, due to space charge limited emission. However, direct plug-in of experimental parameters into the space charge tracking code ASTRA yields lower output charge in the space charge limited regime compared to measured values. The rate of increase of the produced charge at high laser pulse energies close to the space charge limited emission regime seems to be proportional to the amount of halo present in the radial laser profile since the charge from the core has saturated already. By utilizing core + halo particle distributions based on measured radial laser profiles, ASTRA simulations and semi-analytical emission models reproduce the behavior of the measured charge for a wide range of RF gun and laser operational parameters within the measurement uncertainties.Comment: 15 pages, 16 figures, 2 table

    SENSE: A comparison of photon detection efficiency and optical crosstalk of various SiPM devices

    Full text link
    This paper describes a comparison of photon detection efficiency and optical crosstalk measurements performed by three partners: Geneva University, Catania Observatory and Nagoya University. The measurements were compared for three different SiPM devices with different active areas: from 9 mm2mm^2 up to 93.6 mm2mm^2 produced by Hamamatsu. The objective of this work is to establish the measurements and analysis procedures for calculating the main SiPM parameters and their precision. This work was done in the scope of SENSE project which aims to build roadmap for the last developments in field of sensors for low light level detection

    Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology.

    Get PDF
    Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells

    Serial optical coherence microscopy for label-free volumetric histopathology

    Get PDF
    The observation of histopathology using optical microscope is an essential procedure for examination of tissue biopsies or surgically excised specimens in biological and clinical laboratories. However, slide-based microscopic pathology is not suitable for visualizing the large-scale tissue and native 3D organ structure due to its sampling limitation and shallow imaging depth. Here, we demonstrate serial optical coherence microscopy (SOCM) technique that offers label-free, high-throughput, and large-volume imaging of ex vivo mouse organs. A 3D histopathology of whole mouse brain and kidney including blood vessel structure is reconstructed by deep tissue optical imaging in serial sectioning techniques. Our results demonstrate that SOCM has unique advantages as it can visualize both native 3D structures and quantitative regional volume without introduction of any contrast agents
    corecore