2,870 research outputs found

    Interferometric Phase Calibration Sources in the Declination Range 0deg to -30deg

    Full text link
    We present a catalog of 321 compact radio sources in the declination range 0deg > delta > -30deg. The positions of these sources have been measured with a two-dimensional rms accuracy of 35 milliarcseconds using the NRAO Very Large Array. Each source has a peak flux density >50 mJy at 8.4 GHz. We intend for this catalog to be used mainly for selection of phase calibration sources for radio interferometers, although compact radio sources have other scientific uses.Comment: 9 pages. To appear in ApJS. Catalog (Table 3) is abbreviated in printed version. Complete catalog available at ftp://ftp.aoc.nrao.edu/pub/staff/jwrobel/WPW2003_ApJS.tx

    Video Synopsis Generation Using Spatio-Temporal Groups

    Full text link
    Millions of surveillance cameras operate at 24x7 generating huge amount of visual data for processing. However, retrieval of important activities from such a large data can be time consuming. Thus, researchers are working on finding solutions to present hours of visual data in a compressed, but meaningful way. Video synopsis is one of the ways to represent activities using relatively shorter duration clips. So far, two main approaches have been used by researchers to address this problem, namely synopsis by tracking moving objects and synopsis by clustering moving objects. Synopses outputs, mainly depend on tracking, segmenting, and shifting of moving objects temporally as well as spatially. In many situations, tracking fails, thus produces multiple trajectories of the same object. Due to this, the object may appear and disappear multiple times within the same synopsis output, which is misleading. This also leads to discontinuity and often can be confusing to the viewer of the synopsis. In this paper, we present a new approach for generating compressed video synopsis by grouping tracklets of moving objects. Grouping helps to generate a synopsis where chronologically related objects appear together with meaningful spatio-temporal relation. Our proposed method produces continuous, but a less confusing synopses when tested on publicly available dataset videos as well as in-house dataset videos

    Singularities in optimal structural design

    Get PDF
    Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis

    Improved Cosmological Constraints from Gravitational Lens Statistics

    Full text link
    We combine the Cosmic Lens All-Sky Survey (CLASS) with new Sloan Digital Sky Survey (SDSS) data on the local velocity dispersion distribution function of E/S0 galaxies, ϕ(σ)\phi(\sigma), to derive lens statistics constraints on ΩΛ\Omega_\Lambda and Ωm\Omega_m. Previous studies of this kind relied on a combination of the E/S0 galaxy luminosity function and the Faber-Jackson relation to characterize the lens galaxy population. However, ignoring dispersion in the Faber-Jackson relation leads to a biased estimate of ϕ(σ)\phi(\sigma) and therefore biased and overconfident constraints on the cosmological parameters. The measured velocity dispersion function from a large sample of E/S0 galaxies provides a more reliable method for probing cosmology with strong lens statistics. Our new constraints are in good agreement with recent results from the redshift-magnitude relation of Type Ia supernovae. Adopting the traditional assumption that the E/S0 velocity function is constant in comoving units, we find a maximum likelihood estimate of ΩΛ=0.74\Omega_\Lambda = 0.74--0.78 for a spatially flat unvierse (where the range reflects uncertainty in the number of E/S0 lenses in the CLASS sample), and a 95% confidence upper bound of ΩΛ<0.86\Omega_\Lambda<0.86. If ϕ(σ)\phi(\sigma) instead evolves in accord with extended Press-Schechter theory, then the maximum likelihood estimate for ΩΛ\Omega_\Lambda becomes 0.72--0.78, with the 95% confidence upper bound ΩΛ<0.89\Omega_\Lambda<0.89. Even without assuming flatness, lensing provides independent confirmation of the evidence from Type Ia supernovae for a nonzero dark energy component in the universe.Comment: 35 pages, 15 figures, to be published in Ap

    MERLIN/VLA imaging of the gravitational lens system B0218+357

    Get PDF
    Gravitational lenses offer the possibility of accurately determining the Hubble parameter (H_0) over cosmological distances, and B0218+357 is one of the most promising systems for an application of this technique. In particular this system has an accurately measured time delay (10.5+/-0.4 d; Biggs et al. 1999) and preliminary mass modelling has given a value for H_0 of 69 +13/-19 km/s/Mpc. The error on this estimate is now dominated by the uncertainty in the mass modelling. As this system contains an Einstein ring it should be possible to constrain the model better by imaging the ring at high resolution. To achieve this we have combined data from MERLIN and the VLA at a frequency of 5 GHz. In particular MERLIN has been used in multi-frequency mode in order to improve substantially the aperture coverage of the combined data set. The resulting map is the best that has been made of the ring and contains many new and interesting features. Efforts are currently underway to exploit the new data for lensing constraints using the LensClean algorithm (Kochanek & Narayan 1992).Comment: Accepted for publication in MNRAS. 6 pages, 4 included PostScript figure
    corecore