14,927 research outputs found

    Are the Kepler Near-Resonance Planet Pairs due to Tidal Dissipation?

    Get PDF
    The multiple-planet systems discovered by the Kepler mission show an excess of planet pairs with period ratios just wide of exact commensurability for first-order resonances like 2:1 and 3:2. In principle, these planet pairs could have both resonance angles associated with the resonance librating if the orbital eccentricities are sufficiently small, because the width of first-order resonances diverges in the limit of vanishingly small eccentricity. We consider a widely-held scenario in which pairs of planets were captured into first-order resonances by migration due to planet-disk interactions, and subsequently became detached from the resonances, due to tidal dissipation in the planets. In the context of this scenario, we find a constraint on the ratio of the planet's tidal dissipation function and Love number that implies that some of the Kepler planets are likely solid. However, tides are not strong enough to move many of the planet pairs to the observed separations, suggesting that additional dissipative processes are at play.Comment: 20 pages, including 7 figures; accepted for publication in Ap

    Determination of Nonlinear Genetic Architecture using Compressed Sensing

    Full text link
    We introduce a statistical method that can reconstruct nonlinear genetic models (i.e., including epistasis, or gene-gene interactions) from phenotype-genotype (GWAS) data. The computational and data resource requirements are similar to those necessary for reconstruction of linear genetic models (or identification of gene-trait associations), assuming a condition of generalized sparsity, which limits the total number of gene-gene interactions. An example of a sparse nonlinear model is one in which a typical locus interacts with several or even many others, but only a small subset of all possible interactions exist. It seems plausible that most genetic architectures fall in this category. Our method uses a generalization of compressed sensing (L1-penalized regression) applied to nonlinear functions of the sensing matrix. We give theoretical arguments suggesting that the method is nearly optimal in performance, and demonstrate its effectiveness on broad classes of nonlinear genetic models using both real and simulated human genomes.Comment: 20 pages, 8 figures. arXiv admin note: text overlap with arXiv:1408.342

    Does the BICEP2 Observation of Cosmological Tensor Modes Imply an Era of Nearly Planckian Energy Densities?

    Get PDF
    BICEP2 observations, interpreted most simply, suggest an era of inflation with energy densities of order (1016GeV)410^{16}\, {\rm GeV})^4, not far below the Planck density. However, models of TeV gravity with large extra dimensions might allow a very different interpretation involving much more modest energy scales. We discuss the viability of inflation in such models, and conclude that existing scenarios do not provide attractive alternatives to single field inflation in four dimensions. Because the detection of tensor modes strengthens our confidence that inflation occurred, it disfavors models of large extra dimensions, at least for the moment.Comment: 4 pages, v3: version to appear in JHE

    Instability of Quantum de Sitter Spacetime

    Get PDF
    Quantized fields (e.g., the graviton itself) in de Sitter (dS) spacetime lead to particle production: specifically, we consider a thermal spectrum resulting from the dS (horizon) temperature. The energy required to excite these particles reduces slightly the rate of expansion and eventually modifies the semiclassical spacetime geometry. The resulting manifold no longer has constant curvature nor time reversal invariance, and back-reaction renders the classical dS background unstable to perturbations. In the case of AdS, there exists a global static vacuum state; in this state there is no particle production and the analogous instability does not arise.Comment: 3 pages, v2: version to appear in JHE

    Context-aware Cluster Based Device-to-Device Communication to Serve Machine Type Communications

    Full text link
    Billions of Machine Type Communication (MTC) devices are foreseen to be deployed in next ten years and therefore potentially open a new market for next generation wireless network. However, MTC applications have different characteristics and requirements compared with the services provided by legacy cellular networks. For instance, an MTC device sporadically requires to transmit a small data packet containing information generated by sensors. At the same time, due to the massive deployment of MTC devices, it is inefficient to charge their batteries manually and thus a long battery life is required for MTC devices. In this sense, legacy networks designed to serve human-driven traffics in real time can not support MTC efficiently. In order to improve the availability and battery life of MTC devices, context-aware device-to-device (D2D) communication is exploited in this paper. By applying D2D communication, some MTC users can serve as relays for other MTC users who experience bad channel conditions. Moreover, signaling schemes are also designed to enable the collection of context information and support the proposed D2D communication scheme. Last but not least, a system level simulator is implemented to evaluate the system performance of the proposed technologies and a large performance gain is shown by the numerical results

    Equation of motion for multiqubit entanglement in multiple independent noisy channels

    Full text link
    We investigate the possibility and conditions to factorize the entanglement evolution of a multiqubit system passing through multi-sided noisy channels. By means of a lower bound of concurrence (LBC) as entanglement measure, we derive an explicit formula of LBC evolution of the N-qubit generalized Greenberger-Horne-Zeilinger (GGHZ) state under some typical noisy channels, based on which two kinds of factorizing conditions for the LBC evolution are presented. In this case, the time-dependent LBC can be determined by a product of initial LBC of the system and the LBC evolution of a maximally entangled GGHZ state under the same multi-sided noisy channels. We analyze the realistic situations where these two kinds of factorizing conditions can be satisfied. In addition, we also discuss the dependence of entanglement robustness on the number of the qubits and that of the noisy channels.Comment: 14 page

    Opportunistic Collaborative Beamforming with One-Bit Feedback

    Full text link
    An energy-efficient opportunistic collaborative beamformer with one-bit feedback is proposed for ad hoc sensor networks over Rayleigh fading channels. In contrast to conventional collaborative beamforming schemes in which each source node uses channel state information to correct its local carrier offset and channel phase, the proposed beamforming scheme opportunistically selects a subset of source nodes whose received signals combine in a quasi-coherent manner at the intended receiver. No local phase-precompensation is performed by the nodes in the opportunistic collaborative beamformer. As a result, each node requires only one-bit of feedback from the destination in order to determine if it should or shouldn't participate in the collaborative beamformer. Theoretical analysis shows that the received signal power obtained with the proposed beamforming scheme scales linearly with the number of available source nodes. Since the the optimal node selection rule requires an exhaustive search over all possible subsets of source nodes, two low-complexity selection algorithms are developed. Simulation results confirm the effectiveness of opportunistic collaborative beamforming with the low-complexity selection algorithms.Comment: Proceedings of the Ninth IEEE Workshop on Signal Processing Advances in Wireless Communications, Recife, Brazil, July 6-9, 200

    Quantum Speed Limit for Perfect State Transfer in One Dimension

    Full text link
    The basic idea of spin chain engineering for perfect quantum state transfer (QST) is to find a set of coupling constants in the Hamiltonian, such that a particular state initially encoded on one site will evolve freely to the opposite site without any dynamical controls. The minimal possible evolution time represents a speed limit for QST. We prove that the optimal solution is the one simulating the precession of a spin in a static magnetic field. We also argue that, at least for solid-state systems where interactions are local, it is more realistic to characterize the computation power by the couplings than the initial energy.Comment: 5 pages, no figure; improved versio
    corecore