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ABSTRACT

The multiple-planet systems discovered by the Kepler mission show an excess of planet pairs with period ratios just
wide of exact commensurability for first-order resonances like 2:1 and 3:2. In principle, these planet pairs could
have both resonance angles associated with the resonance librating if the orbital eccentricities are sufficiently small,
because the width of first-order resonances diverges in the limit of vanishingly small eccentricity. We consider
a widely held scenario in which pairs of planets were captured into first-order resonances by migration due to
planet–disk interactions, and subsequently became detached from the resonances, due to tidal dissipation in the
planets. In the context of this scenario, we find a constraint on the ratio of the planet’s tidal dissipation function and
Love number that implies that some of the Kepler planets are likely solid. However, tides are not strong enough
to move many of the planet pairs to the observed separations, suggesting that additional dissipative processes are
at play.
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1. INTRODUCTION

The Kepler space telescope is designed to detect the periodic
transits of exoplanets in front of their host stars. Based on the
data obtained during the first 16 months of Kepler’s operation,
more than 2000 planetary candidates have been identified,
analyzed, and published (Batalha et al. 2013). Most of these
planetary candidates have radii in the range one to four times that
of the Earth (R⊕) and orbital periods P less than a few months.
The rarity of planets with smaller radii and longer periods is due
to observational selection effects. Although a large fraction of
these candidates may indeed be planets, some of them may be
due to the blending of background eclipsing binary stars with
the light of foreground stars.

In the 16 month Kepler catalog,6 there are 361 host stars
which bear 2 or more transiting planetary candidates (Fabrycky
et al. 2012), and almost all of them are real multiple-planet
systems (Lissauer et al. 2012). Their orbital configurations
contain valuable information on the history of their formation
and dynamical evolution. In particular, although a majority of
the planet pairs are not in or near mean-motion resonances, there
is an excess of planet pairs with outer-to-inner orbital period
ratios, P2/P1, just wide of first-order 2:1 and 3:2 resonances
and a deficit of pairs with P2/P1 just smaller than 2:1 and 3:2
(Lissauer et al. 2011; Fabrycky et al. 2012). The excess and
deficit occur within a few percent of exact commensurabilities.
Figure 1 shows the histogram of period ratio for all Kepler
candidate pairs, pairs with radius of the inner planet R1 < 2 R⊕
(Earths and super-Earths), and pairs with R1 > 2 R⊕ (Neptunes
and above). Both pairs with R1 < 2 R⊕, and pairs with
R1 > 2 R⊕ show an excess for P2/P1 just larger than 3:2 and
a deficit just smaller than 2:1, but interestingly, there is not an

5 Hubble Fellow.
6 We did not use the 2 yr catalog of Burke et al. (2013), which is available at
http://exoplanetarchive.ipac.caltech.edu/, in this paper, as the 2 yr catalog was
still changing, with evolving biases and completeness, when we completed this
work.

obvious excess just larger than 2:1 for pairs with R1 < 2 R⊕
(although the statistics is noisy due to small numbers). Also,
the lack of pairs with P2/P1 just smaller than 3:2 reported
by Fabrycky et al. (2012) is not notable in Figure 1, because
the bin size (0.05) is large compared to the width of the gap
(0.01–0.02).7

The Kepler candidates should be contrasted with the radial
velocity sample, which also shows an excess of planet pairs
near the 2:1 resonance. The radial-velocity planets are mostly
Jupiter-mass planets, and the excess near the 2:1 resonance
consists of confirmed (or likely) resonant pairs such as GJ 876
(Laughlin & Chambers 2001; Rivera & Lissauer 2001; Laughlin
et al. 2005) and HD 82943 (Lee et al. 2006; Tan et al.
2013). A widely accepted hypothesis for the origin of such
resonances is resonance capture through convergent migration
of the planets (Bryden et al. 2000; Kley 2000; Lee & Peale
2002). Tidal interaction between an embedded planet and its
natal protoplanetary disk generally leads to a torque imbalance
(Goldreich & Tremaine 1980). Jupiter-mass planets are able
to open gaps in the disks, and they generally evolve with the
viscous diffusion of their natal disks and undergo inward type II
migration (except in the outermost regions of the disk where the
disk spreads viscously outward and the migration is outward;
Lin & Papaloizou 1986). Convergent migration occurs if the
inward migration of the outer planet proceeds faster than that
of the inner planet and the outer-to-inner period ratio, P2/P1,
decreases.

Lower-mass planets, like most of the Kepler candidates, do
not significantly perturb the disk surface density distribution,
and thus they undergo type I migration. The direction of type I
migration is expected to be inward in the classic theory of, e.g.,

7 Fabrycky et al. (2012) have found that the distribution of period ratios
around second-order resonances is consistent with a random distribution. The
excess of pairs with R1 < 2 R⊕ (as well as all pairs) for the bin in Figure 1
centered at P2/P1 = 1.725, which is just wide of the second-order 5:3
resonance, is likely an artifact, as there are no longer obvious features around
5:3 when we shift the bins by, e.g., 0.02 in P2/P1.
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Figure 1. Histogram of period ratio P2/P1 for all Kepler candidate pairs (bottom
panel), pairs with radius of the inner planet R1 < 2 R⊕ (middle panel), and
pairs with R1 > 2 R⊕ (upper panel). The dotted lines mark the exact period
commensurabilities for the 3:1, 2:1, 5:3 and 3:2 resonances.

Ward (1997), but more recent analysis have shown that type
I migration could be outward in the viscously heated regions
of some disk models (Paardekooper et al. 2011; Kretke & Lin
2012).

Tidal interactions also occur between planets and their host
stars, which generally lead toward a state of spin synchronization
and orbital circularization (see, e.g., Hut 1981; Peale 1999).
If the host spins with a frequency faster (slower) than its
companion’s orbital mean motion, the dissipation of the tides
raised by the companion in the host would reduce (increase) the
host’s spin frequency and increase (decrease) the companion’s
orbital semimajor axis on a timescale which is determined by
the host’s Q/k2 value, where Q is the tidal dissipation function
and k2 is the Love number. The companion’s eccentricity is
generally damped by the dissipation of the tides raised by the
host in the companion on a timescale which is determined by
the companion’s Q/k2 value.

In this paper, we consider in detail a scenario which may ac-
count for the Kepler near-resonance planet pairs. Pairs of planets
were captured into first-order resonances by convergent migra-
tion due to planet–disk interactions, and subsequently became
detached from the resonances due to tidal dissipation in the plan-
ets. The latter process was proposed by Novak et al. (2003) and
more recently by Papaloizou & Terquem (2010), Lithwick &
Wu (2012), and Batygin & Morbidelli (2013). In Section 2, we
give a simple explanation why the period ratio P2/P1 should in
fact be slightly larger than the exact period ratio for a first-order
resonance, if both resonance angles are librating. We then show
that classic type I migration should result in resonant pairs with
P2/P1 much closer to exact commensurability than the few per-
cent departures observed for the Kepler near-resonance pairs.

Subsequent tidal damping of eccentricity and evolution away
from exact commensurability are discussed in Section 3, along
with known constraints on Q/k2 for rocky and giant planets.
Comparisons with the observed Kepler near-resonance pairs are
used to derive constraints on Q/k2 and the rocky/giant nature
of the Kepler planets in Section 4. The results are summarized
and discussed in Section 5.

2. RESONANT PLANET PAIRS

For first-order, j:(j − 1), mean-motion resonances like 2:1
and 3:2, there are two eccentricity-type resonance angles,

θ1 = (j − 1)λ1 − jλ2 + �1, (1)

θ2 = (j − 1)λ1 − jλ2 + �2, (2)

where λi is the mean longitude of planet i and �i is the
longitude of periapse (i = 1 and 2 for the inner and outer
planets, respectively). At least one of these angles must librate
about a fixed value for the pair to be in resonance, if we
ignore inclination resonances. The resonance induced periapse
precession is usually retrograde, i.e., �̇i < 0 (see below). In
the best example of a mean-motion resonance in extrasolar
planetary systems, the 2:1 resonance in GJ 876, both angles
librate about 0◦, and the periapses are observed to precess at an
average rate of �̇i = −41◦ yr−1 (Laughlin & Chambers 2001;
Rivera & Lissauer 2001; Lee & Peale 2002; Laughlin et al.
2005). If the resonance angle θi is librating,

θ̇i = (j − 1)n1 − jn2 + �̇i = 0 (3)

on average, or

P2

P1
− j

(j − 1)
= − �̇i

(j − 1)n2
> 0, (4)

where ni is the mean motion, Pi = 2π/ni is the orbital
period, and �̇i < 0 due to the resonance. So P2/P1 should
in fact be slightly larger than the exact period ratio for a
resonant pair.

In the vicinity of a j:(j − 1) resonance, the Hamiltonian to
the lowest order in the orbital eccentricities ei is

H = −GM∗M1

2a1
− GM∗M2

2a2
− GM1M2

a2

× (C1e1 cos θ1 + C2e2 cos θ2), (5)

where M∗ is the stellar mass, Mi is the planetary mass, and
ai is the orbital semimajor axis (e.g., Peale 1986; Murray &
Dermott 1999). The coefficients C1 = (1/2)(−2j−αD)b(j )

1/2 and

C2 = (1/2)(−1+2j +αD)b(j−1)
1/2 −δj2/(2α2), where α = a1/a2,

b
(j )
1/2(α) is the Laplace coefficient, D = d/dα, and δj2 is the

Kronecker delta. For 2:1, C1 = −1.190 and C2 = 0.428. For
3:2, C1 = −2.025 and C2 = 2.444. The first two terms of the
Hamiltonian are the unperturbed Keplerian Hamiltonian and the
remaining terms are the resonant interactions. The equation for
the variation of the periapse longitude is

d�i

dt
= −

√
1 − e2

i

Miei

√
GM∗ai

∂H

∂ej

, (6)

2



The Astrophysical Journal, 774:52 (8pp), 2013 September 1 Lee, Fabrycky, & Lin

Figure 2. Evolution of the semimajor axes a1 and a2, eccentricities e1 and e2, departure of the period ratio P2/P1 from 2, and 2:1 eccentricity-type resonance variables
θ1 = λ1 − 2λ2 + �1 and θ2 = λ1 − 2λ2 + �2, for a convergent migration calculation with the stellar mass M∗ = 1 M� and planetary masses M1 = M2 = 10 M⊕.
The outer planet is forced to migrate inward with ȧ2/a2 = −2 × 10−6/P2 and eccentricity damping factor Ke = 100. The semimajor axes and time are in units of the
initial orbital semimajor axis, a2,0, and period, P2,0, of the outer planet, respectively.

if we assume coplanar orbits. Since libration of θ1 about
0◦ and θ2 about 180◦ is the only stable resonance configu-
ration for small eccentricities (e.g., Peale 1986; Murray &
Dermott 1999; Lee 2004), �̇1 = αn1(M2/M∗)C1/e1 and
�̇2 = −n2(M1/M∗)C2/e2 to the lowest order in eccentrici-
ties. Thus �̇i ∝ −1/ei and P2/P1 − j/(j − 1) could be large
and positive, if the eccentricities are small. This is different from
higher-order resonances. For example, for a second-order reso-
nance, the resonant terms in the Hamiltonian to the lowest order
in the eccentricities are proportional to e2

1, e1e2, and e2
2, and �̇1

involves terms that are either independent of the eccentricities
or proportional to e2/e1 (similarly, e1/e2 for �̇2).

We can derive two simple relationships between the eccen-
tricities and the period ratio from the above expressions for �̇1
and �̇2. From the requirement that both orbits precess at the
same rate on average, i.e., �̇1 = �̇2,

e2

e1
= −α1/2 C2

C1

M1

M2
(7)

(Lee 2004). Substituting �̇1 into Equation (4),

P2

P1
− j

j − 1
= −1

(j − 1)
α−1/2 M2

M∗

C1

e1
. (8)

In the above equations, α = a1/a2 ≈ [(j − 1)/j ]2/3.
Convergent migration of planets due to interactions with the

protoplanetary disk can result in capture into mean-motion
resonances. This is the most likely scenario for the origin
of the 2:1 resonance in the GJ 876 system (Lee & Peale
2002). If the growth of eccentricity due to continued migration
within the resonance is balanced by the damping of eccentricity
by planet–disk interactions, the eccentricities would reach
equilibrium values determined by the ratio of the rates of
eccentricity damping and migration. A natural question arises as
to whether the Kepler near-resonance pairs are simply resonance
pairs with very small eccentricities (and hence large positive
departure of P2/P1 from exact commensurability) due to large

eccentricity damping during disk-induced migration.8 Most of
the Kepler candidate planets are sufficiently small that they are
unable to open gaps in the protoplanetary disks and should
undergo type I migration. For classic type I migration, the
migration rate is (Ward 1997; Tanaka et al. 2002)

ȧ

a
= −Ca

Mp

M∗

Σa2

M∗

(
H

a

)−2 2π

P
, (9)

and the eccentricity damping rate is (Artymowicz 1993)

ė

e
= −9Ce

Mp

M∗

Σa2

M∗

(
H

a

)−4 2π

P
, (10)

where Ca ≈ 3, Ce ≈ 0.1, Mp is the planetary mass, Σ is the
surface mass density of the disk, and H/a is the dimensionless
scale height of the disk. The ratio

Ke =
∣∣∣∣ ė/e

ȧ/a

∣∣∣∣ = 9Ce

Ca

(
H

a

)−2

. (11)

For H/a = 0.05 and 0.1, Ke = 120 and 30, respectively.
We have performed direct numerical orbit integrations using

the symplectic integrator SyMBA modified to include forced
migration and eccentricity damping (Lee & Peale 2002; Lee
2004). Figure 2 shows a convergent migration calculation with
M∗ = 1 M� and M1 = M2 = 10 M⊕. The planets are initially
far from the 2:1 mean-motion commensurability, and the outer
planet is forced to migrate inward with ȧ2/a2 ∝ P −1

2 and
Ke = 100. The pair is captured into 2:1 resonance with both θ1
and θ2 librating. The centers of libration change from θ1 = 0◦
and θ2 = 180◦ at small eccentricities to close to θ1 = θ2 = 0◦

8 At sufficiently small eccentricities, the regions of libration and circulation
of the resonant angles are not separated by separatrices, and it is often said that
the pair is no longer in resonance (e.g., Delisle et al. 2012). However, our
analysis applies as long as the interactions between the planets are dominated
by the libration of the resonant angles.
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at large eccentricities (with the offsets from 0◦ due to the forced
migration and eccentricity damping). The eccentricities reach
equilibrium values that are too large (e1 ≈ 0.2), and P2/P1
departs from 2 by less than 0.001 at the end. This result is
representative of calculations with Ke ∼ 100 for both 2:1 and
3:2. Hence the Kepler near-resonance pairs are not the result
of eccentricity damping within the expected range during disk-
induced classic type I migration.

3. TIDAL DAMPING OF ECCENTRICITY

It has been proposed that the subsequent damping of orbital
eccentricities by tidal dissipation in the planets may reduce
the eccentricities to sufficiently small values to explain the
observed departures from exact commensurabilities (Lithwick
& Wu 2012; Batygin & Morbidelli 2013). Tidal dissipation in
the planet damps the orbital eccentricity on timescale

τe = e

ė
= 1

21π

Q

k2

Mp

M∗

(
a

Rp

)5

P, (12)

while conserving the total angular momentum of the system,
where Rp, Q, and k2 are the radius, tidal dissipation function,
and Love number of the planet of mass Mp. The above equation
assumes that the planet is synchronously rotating and that Q
is constant as a function of the tidal frequencies. Since ė/e is
independent of e and a changes only slightly for small e, one
would expect e to decay exponentially. However, as we now
demonstrate, the eccentricities do not decay exponentially for
near-resonance pairs due to interactions between the planets:
they decay slowly according to a shallow power law.

Using migration calculations with eccentricity damping simi-
lar to that shown in Figure 2, we have assembled several 2:1 and
3:2 configurations with M∗ = 1 M� and different M1 and M2.
These configurations were then evolved in calculations where
the eccentricity of the inner planet is damped on a constant
timescale τe (while the semimajor axis of the inner planet is
adjusted at the same time to conserve orbital angular momen-
tum) to simulate tidal dissipation in the inner planet. We ignore
tidal dissipation in the outer planet as the rate is a steep func-
tion of semimajor axis (Equation (12)). The results are plotted
in Figures 3 and 4. In Figure 3 for 3:2, the dashed, solid, and
dot-dashed lines are for M1 + M2 = 20 M⊕ and M1/M2 = 0.5,
1.0, and 2.0, respectively. In Figure 4 for 2:1, the dashed, solid,
and dot-dashed lines are for M1 = M2 = 5, 10, and 20 M⊕,
respectively. The figures show that

e1 ∝ (t/τe)−1/3, (13)

and
P2

P1
− j

(j − 1)
= (Dj t/τe)1/3, (14)

after an initial transient period of a few τe. We have checked that
the relationships in Equations (7) and (8) are satisfied during the
power-law decay. Lithwick & Wu (2012), Batygin & Morbidelli
(2013), and Delisle et al. (2012) have explained this power-law
behavior (see also Papaloizou & Terquem 2010) and derived
analytically Dj as a function of M1/M∗ and M2/M1 for the
j:(j − 1) resonance:

Dj = 9j 2

(j − 1)3

(
M1

M∗

)2

β(1 + β)C2
1 , (15)

Figure 3. Evolution of the departure of the period ratio P2/P1 from 3/2 and
eccentricity of the inner planet e1 for numerical calculations where e1 is damped
on a constant timescale τe to simulate tidal dissipation in the inner planet. The
planet pair is initially in the 3:2 resonance, with M∗ = 1 M�, M1+M2 = 20 M⊕,
and M1/M2 = 0.5 (dashed lines), 1.0 (solid lines), and 2.0 (dot-dashed lines).
The dotted lines in the lower panel show Equations (14) and (15) from the
analytic theory.

where

β = M2

M1
α−1/2 = M2

M1

(
j

j − 1

)1/3

. (16)

The dotted lines in Figures 3 and 4 show the analytic result,
which is in excellent agreement with the numerical results after
the initial transient period.

We have so far assumed that tidal dissipation in the inner
planet conserves the orbital angular momentum. Strictly speak-
ing, tidal dissipation conserves the total angular momentum,
which includes the spin angular momentum. There is a small
change in Dj if we account for the tidal evolution of the planet’s
spin. We have also ignored the tidal dissipation in the outer
planet, which adds to Dj/τe but does not change the 1/3 power-
law behavior (Lithwick & Wu 2012; Batygin & Morbidelli
2013).

An important consequence of this slow power-law behavior
is that many τe must elapse to produce a departure of P2/P1
of a few percent from exact commensurability. For example,
P2/P1 − j/(j − 1) ≈ 0.03 requires t � 50τe (see Figures 3
and 4). For P = 10 days, M∗ = 1 M�, Mp = 10 M⊕,
Rp = 3 R⊕,

τe = 2.26 × 106(Q/k2) yr. (17)

Whether a near-resonance pair can reach its P2/P1 − j/(j − 1)
within the age of its host star (∼ a few Gyr) depends critically
on Q/k2 of the inner planet, which is very different for rocky
and giant planets, as we now review.

4
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Figure 4. Same as Figure 3, but for the 2:1 resonance with M1 = M2 = 5 M⊕
(dashed lines), 10 M⊕ (solid lines), and 20 M⊕ (dot-dashed lines).

3.1. Known Constraints on Q/k2 of Planets

The tidal Q/k2 of solar system planets have been measured or
constrained by the tidal evolution of their satellites. The known
value and limit on Q/k2 for rocky planets are Q/k2 = 40 for
Earth (Murray & Dermott 1999) and 470 < Q/k2 < 1000 for
Mars (Shor 1975; Sinclair 1978; Duxbury & Callahan 1982).
The known limits on Q/k2 for giant planets are: 1.6 × 105 <
Q/k2 < 5.3×106 for Jupiter (Yoder & Peale 1981), 5.4×104 <
Q/k2 < 2.9 × 105 for Saturn (Peale 1999; Meyer & Wisdom
2008), 1.1 × 105 < Q/k2 < 3.8 × 105 for Uranus (Tittemore
& Wisdom 1990), and 2.2 × 104 < Q/k2 < 8.8 × 104 for
Neptune (Banfield & Murray 1992; Zhang & Hamilton 2008).
For extrasolar giant planets, 6.7×104 < Q/k2 < 6.7×108 has
been derived from the existence of some close-in planets with
non-zero orbital eccentricities (Matsumura et al. 2008). So the
lowest bound on Q/k2 is 40 for rocky planets from Earth and
2.2 × 104 for giant planets from Neptune.

If we substitute these lowest bounds into the estimate in
Equation (17), we find τe � 9 × 107 yr for rocky planets and
τe � 5 × 1010 yr for giant planets, which indicate that a near-
resonance pair might be able to reach its P2/P1 −j/(j −1) over
the age of its host star, if the inner planet is rocky (and not if the
inner planet is a giant).

4. COMPARISON WITH OBSERVATIONS

Figure 5 shows the tidal eccentricity damping timescale τe

(Equation (12)) of the inner planet for the Kepler candidate
pairs near the 2:1 and 3:2 resonances. Circles are adjacent
pairs, and triangles are non-adjacent pairs. Filled and open

Figure 5. Tidal eccentricity damping timescale τe (Equation (12)) of the inner
planet for the Kepler candidate pairs near the 2:1 (lower panel) and 3:2 (upper
panel) resonances. Circles and triangles are adjacent and non-adjacent pairs,
respectively, and filled and open symbols are pairs with R1 < 2 R⊕ and
R1 > 2 R⊕, respectively. We adopt Q/k2 = 105 and Mp = M⊕(Rp/R⊕)2.06

for planets with Rp > 2 R⊕, and Q/k2 = 100 and Mp = M⊕(Rp/R⊕)3.7 for
planets with Rp < 2 R⊕. The dashed and solid lines show τe as a function of
P2/P1 according to Equations (14) and (15) for t = 1 and 13.7 Gyr, respectively,
if we have two 10 M⊕ planets orbiting a solar-mass star.

symbols are pairs with the radius of the inner planet R1 < 2 R⊕
and R1 > 2 R⊕, respectively. For the “giant” planets with
Rp > 2 R⊕, we adopt Q/k2 = 105 and mass from the
mass–radius relationship Mp = M⊕(Rp/R⊕)2.06 of Lissauer
et al. (2011), which is consistent with Earth to Saturn in the
solar system (other proposed mass–radius relationships, such as
those of Wu & Lithwick 2013 and Weiss et al. 2013, would give
a similar plot). For the “rocky” planets with Rp < 2 R⊕, we
adopt Q/k2 = 100 and mass from the mass–radius relationship
Mp = M⊕(Rp/R⊕)3.7 of Valencia et al. (2006). The dashed
and solid lines in Figure 5 show τe as a function of P2/P1
according to Equations (14) and (15) for t = 1 Gyr and 13.7 Gyr,
respectively, if we have two 10 M⊕ planets orbiting a solar-
mass star (i.e., M1/M∗ = 3 × 10−5 and M1 = M2). These
lines indicate where such a resonant pair would be in P2/P1,
if it started near exact commensurability, its age is t = 1 Gyr
or 13.7 Gyr, and the tidal eccentricity damping timescale of
the inner planet is τe. There are some filled symbols below the
solid lines for the age of the universe, hinting that some of

5
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Figure 6. Maximum Q/k2 (Equation (18)) that the inner planet must have if
the Kepler near-resonance pairs are to evolve to their current P2/P1 in less than
13.7 Gyr. The pairs with R1 < 2 R⊕ (lower panels) and R1 > 2 R⊕ (upper
panels) are shown in the left and right panels for the 3:2 and 2:1 resonances,
respectively. We adopt Mp = M⊕(Rp/R⊕)2.06 for planets with Rp > 2 R⊕,
and Q/k2 = 100 and Mp = M⊕(Rp/R⊕)3.7 for planets with Rp < 2 R⊕.
The lines with arrows pointing upward are the known lowest bound on Q/k2:
2.2 × 104 for giant planets and 40 for rocky planets.

the near-resonance pairs with R1 < 2 R⊕ can potentially reach
their current locations by tidal eccentricity damping in less than
the age of the host star. Most of the pairs with R1 > 2 R⊕
(open symbols) are well above the lines, indicating that they
are unlikely to reach their current locations by tidal eccentricity
damping. However, the comparison in Figure 5 is not exact, as
the theoretical curves are for a specific combination of stellar
and planetary masses, and the observed Kepler pairs are plotted
for assumed Q/k2.

Turning the inference around, we may assume that the
current architecture was established by tides, and thereby infer
constraints on Q/k2. We can plot (Equations (12) and (14))

Q

k2
= 21π

P1

M∗
M1

(
R1

a

)5

[P2/P1 − j/(j − 1)]−3 Dj t (18)

versus P2/P1 near the j:(j−1) resonance with t = 13.7 Gyr. This
is the maximum Q/k2 or minimum tidal dissipation efficiency
that the inner planet must have if the pair is to evolve to its current
P2/P1 in less than the age of the universe. The actual Q/k2 is
smaller by the ratio of the age of the planetary system to the age
of the universe. In Figure 6, the points show this maximum Q/k2
for the inner planet of the observed Kepler pairs. The four panels
show the R1 < 2 R⊕ and R1 > 2 R⊕ cases for 3:2 and 2:1. The
lines with arrows pointing upward are the known lowest bound
on Q/k2 for planets (2.2×104 for giant planets and 40 for rocky
planets; see Section 3.1). Figure 6 clearly shows that some pairs
with R1 < 2 R⊕ can reach where they are by tidal eccentricity
damping, if planets with Rp < 2 R⊕ are rocky with Q/k2 � 40.
They include KOI 500.03/04, KOI 500.04/01, KOI 730.02/
01, KOI 961.01/03, and KOI 2038.01/02 just outside 3:2, and
KOI 720.04/01, KOI 904.01/04, KOI 952.04/01, KOI 1161.03/
01, and KOI 1824.02/01 just outside 2:1, which are ∼20%–33%
of all pairs with R1 < 2 R⊕ in the period ratio ranges shown
in Figure 6. However, none of the pairs with R1 > 2 R⊕ can
reach their current P2/P1, if planets with Rp > 2 R⊕ are giants

with Q/k2 � 2.2 × 104. Furthermore, there are clumps of
R1 > 2 R⊕ pairs just outside 2:1 and 3:2 that are more than an
order of magnitude below Q/k2 = 2.2 × 104.

In Figure 6 we only plot the adjacent pairs, as the tidal evo-
lution of the non-adjacent pairs can be significantly affected
by secular or even resonant interactions with the intervening
planet(s). Adjacent pairs with R1 > 2 R⊕ could evolve signifi-
cantly faster, if the outer planet has R2 < 2 R⊕ and much lower
Q/k2 to overcome the steep dependence of the tidal eccen-
tricity damping rate on orbital semimajor axis (Equation (12)).
However, for the observed Kepler pairs with R1 > 2 R⊕ in the
upper panels of Figure 6, only three with P2/P1 between 1.5
and 1.53 and two with P2/P1 between 2 and 2.06 have an outer
planet with R2 < 2 R⊕. So our conclusion that most of the pairs
with R1 > 2 R⊕ cannot reach their current P2/P1 by tidal ec-
centricity damping, if planets with Rp > 2 R⊕ are giants with
Q/k2 � 2.2 × 104, is robust.

In the above analysis, we follow the Kepler team in using
Rp = 2 R⊕ as the boundary between super-Earths and Nep-
tunes. Some pairs are moved from the upper panels of Figure 6
to the lower panels if we increase this boundary to Rp = 2.25 R⊕
(and vice versa if we decrease this boundary to Rp = 1.75 R⊕),
but the overall patterns (i.e., some pairs in the lower panels have
maximum Q/k2 of the inner planet above 40 and all pairs in the
upper panels have maximum Q/k2 of the inner planet below
2.2 × 104) remain the same.

5. SUMMARY AND DISCUSSION

We have shown that some of the Kepler near-resonance
pairs with R1 < 2 R⊕ may be able to move to their current
near-resonance locations by tidal damping of eccentricity if
they are rocky with Q/k2 ∼ 100, but that all known pairs
with R1 > 2 R⊕ are unable to move to their current near-
resonance locations by the same mechanism if they are giants
with Q/k2 � 2 × 104.

What are the alternatives? One possibility is that some of
the Rp > 2 R⊕ planets are in fact rocky with low Q/k2.
We have checked that increasing the boundary between super-
Earths and Neptunes to, say, Rp = 2.25 R⊕ does not change our
conclusions. This possibility can also be checked by measuring
or constraining the masses Mp, and hence the mean densities
ρp, of the planets using transit timing variations (TTVs) or
radial velocity data. Wu & Lithwick (2013) have determined
Mp and ρp for 16 pairs of Kepler planets from TTV (see also
Lithwick et al. 2012; Xie 2012). Nine of these pairs are in the
period ratio ranges plotted in Figure 6, all with R1 > 2 R⊕.
Figure 7 shows the maximum Q/k2 of the inner planet for these
nine pairs according to Equation (18), with the open circles
using assumed mass–radius relationships (same as in the upper
panels of Figure 6) and the filled squares using the actual masses
determined from TTV. The maximum Q/k2 values shift when
actual masses are used, but they remain more than an order
of magnitude below the lowest bound Q/k2 = 2.2 × 104 for
giant planets, and mostly above the lowest bound Q/k2 = 40
for rocky planets. Although the inner planets of two pairs
(KOI 1336.01/02 and KOI 168.03/01) have ρp � 4.7 g cm−3

that clearly exceed the bulk densities of uncompressed rocks,
the inner planets of three pairs (KOI 841.01/02, KOI 244.02/
01, and KOI 248.01/02) have ρp = 0.64–1.3 g cm−3, which are
more consistent with giant planets. Although Wu & Lithwick
(2013) have suggested that the low densities of some planets
with Rp � 3 R⊕ (such as KOI 244.02 and KOI 248.01) could
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Figure 7. Same as Figure 6, but for the pairs with planetary masses obtained
from transit timing variations (TTVs) by Wu & Lithwick (2013). All pairs in
this sample have R1 > 2 R⊕. Each pair shifts vertically from the maximum
Q/k2 determined using assumed mass–radius relationships (open circle; same
as in the upper panels of Figure 6) to that using the actual masses from TTV
(filled square). The numerical value next to each pair indicates the mean density
(in g cm−3) of the inner planet from TTV.

be due to an extended envelope of hydrogen and helium �1% in
mass on a rocky planet, KOI 841.01 (which has Rp = 5.44 R⊕
and ρp = 0.64 g cm−3) is most likely a giant planet.

Another relevant case is the KOI 142 system, which has one
transiting planetary candidate (KOI 142.01) that shows large
TTV as well as detectable transit duration variations (TDVs).
Nesvorný et al. (2013) have determined from the TTV and
TDV that KOI 142.01 has Rp = 4.23+0.30

−0.39 R⊕ and ρp =
0.48+0.54

−0.46 g cm−3 and that it is just wide of the 2:1 resonance
(P2/P1 = 2.03) with an outer planet with M2 = 216 M⊕.
Since there is also an estimated stellar age (≈2.45 Gyr), we can
determine from Equation (18) the actual (instead of maximum)
Q/k2 needed for KOI 142.01: 3400, which is lower than the
lowest bound for giant planets by a factor of 6.5. However,
this constraint on Q/k2 of KOI 142.01 is unlikely to be valid,
because the relatively large orbital eccentricities of both planets
(mean e1 = 0.064 and e2 = 0.055) are not consistent with the
tidal eccentricity damping scenario (Nesvorný et al. 2013).

So another mechanism is needed for some of the pairs with
R1 > 2 R⊕. Petrovich et al. (2013) have considered the possibil-
ity of in situ formation of planets near first-order mean-motion
resonances in a simple dynamical model without orbital migra-
tion or dissipation. For the effective viscosity and dimensionless
scale height, H/a, typically assumed for protoplanetary disks,
most of the Kepler candidates are sufficiently small that they
are unable to open gaps in their natal protoplanetary disks and
should undergo type I migration. Rein (2012) has suggested mi-
gration in a turbulent disk, which has both smooth and stochastic
components, as a way to produce near-resonance pairs. The de-
parture from exact commensurability can be used to constrain
the relative strength of smooth and stochastic migration. How-
ever, Rein (2012) has assumed that the smooth migration is
always inward, which is only true for classic type I (and type II)
migration. Alternatively, Baruteau & Papaloizou (2013) have
shown that planet–disk interactions for partial gap-opening plan-
ets may provide sufficient energy dissipation and eccentricity
damping and lead to near-resonance pairs. However, effective
viscosity and/or dimensionless scale height smaller than typi-
cal values is required for most of the Kepler candidates to open
partial gaps.

Finally, we note that recent analysis of the corotation
and horseshoe torques (plus the differential Lindblad torque)
have shown that the coefficient Ca for the migration rate in
Equation (9) is a function of the local surface density gradient

d ln Σ/d ln a, temperature gradient d ln T/d ln a, viscous satu-
ration parameter pν , and thermal saturation parameter pχ (e.g.,
Paardekooper et al. 2010, 2011). In certain disk models (e.g.,
Garaud & Lin 2007), it is possible for type I migration to be
outward in the viscously heated regions of the disk and in the
region inside the magnetospheric truncation radius, if the coro-
tation and horseshoe torques are not saturated (Paardekooper
et al. 2011; Kretke & Lin 2012). There are also locations in the
disk where the total torque vanishes and the migration is stalled.
This more complex migration behavior means that it is possible
for a pair of planets to undergo both convergent and divergent
migration, as the disk accretion rate decreases with time and the
disk depletes. Whether the breaking of resonances by divergent
migration could result in an excess of planet pairs just outside
the first-order resonances will require further investigation. In
this paper, however, we have shown that the later evolution due
to tides is not enough to explain the structures near resonances.

We thank the referee for helpful comments on the manuscript.
M.H.L. was supported by Hong Kong RGC grant HKU 7034/
09P. D.F. was supported by NASA through Hubble Fellowship
grant HF-51272.01-A awarded by STScI. D.N.C.L. was sup-
ported by NASA (NNX08AM84G), NSF (AST-0908807), and
a University of California Lab Fee grant.

REFERENCES

Artymowicz, P. 1993, ApJ, 419, 166
Banfield, D., & Murray, N. 1992, Icar, 99, 390
Baruteau, C., & Papaloizou, J. C. B. 2013, ApJ, submitted (arXiv:1301.0779)
Batalha, N. M., Rowe, J. F., Bryson, S. T., et al. 2013, ApJS, 204, 24
Batygin, K., & Morbidelli, A. 2013, AJ, 145, 1
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Duxbury, T. C., & Callahan, J. D. 1982, LPSC, 13, 191
Fabrycky, D. C., Lissauer, J. J., Ragozzine, D., et al. 2012, ApJ, submitted

(arXiv:1202.6328)
Garaud, P., & Lin, D. N. C. 2007, ApJ, 654, 606
Goldreich, P., & Tremaine, S. 1980, ApJ, 241, 425
Hut, P. 1981, A&A, 99, 126
Kley, W. 2000, MNRAS, 313, L47
Kretke, K. A., & Lin, D. N. C. 2012, ApJ, 755, 74
Laughlin, G., Butler, R. P., Fischer, D. A., et al. 2005, ApJ, 622, 1182
Laughlin, G., & Chambers, J. E. 2001, ApJL, 551, L109
Lee, M. H. 2004, ApJ, 611, 517
Lee, M. H., Butler, R. P., Fischer, D. A., Marcy, G. W., & Vogt, S. S. 2006, ApJ,

641, 1178
Lee, M. H., & Peale, S. J. 2002, ApJ, 567, 596
Lin, D. N. C., & Papaloizou, J. 1986, ApJ, 309, 846
Lissauer, J. J., Marcy, G. W., Rowe, J. F., et al. 2012, ApJ, 750, 112
Lissauer, J. J., Ragozzine, D., Fabrycky, D. C., et al. 2011, ApJS, 197, 8
Lithwick, Y., & Wu, Y. 2012, ApJL, 756, L11
Lithwick, Y., Xie, J., & Wu, Y. 2012, ApJ, 761, 122
Matsumura, S., Genya, T., & Rasio, F. A. 2008, ApJL, 686, L29
Meyer, J., & Wisdom, J. 2008, Icar, 193, 178
Murray, C. D., & Dermott, S. F. 1999, Solar System Dynamics (Cambridge:

Cambridge Univ. Press)
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