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Abstract: Quantized fields (e.g., the graviton itself) in de Sitter (dS) spacetime lead

to particle production: specifically, we consider a thermal spectrum resulting from the

dS (horizon) temperature. The energy required to excite these particles reduces slightly

the rate of expansion and eventually modifies the semiclassical spacetime geometry. The

resulting manifold no longer has constant curvature nor time reversal invariance, and back-

reaction renders the classical dS background unstable to perturbations. In the case of AdS,

there exists a global static vacuum state; in this state there is no particle production and

the analogous instability does not arise.
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1 Introduction

In classical general relativity, a cosmological constant Λ has the special property that the

equation of state must satisfy

w =
p

ρ
= −1 (1.1)

exactly, where p is the associated pressure and ρ the energy density. This is equivalent to

the energy-momentum tensor Tµν satisfying

Tµν = Λ gµν , (1.2)

where gµν is the metric tensor. For Λ > 0, negative pressure does negative work as the

universe expands, and provides exactly enough energy to produce new spacetime volume

filled with more cosmological constant. Thus, expansion can continue forever, leading to a

highly symmetric constant curvature spacetime known as de Sitter (dS) spacetime.

A (d+1)-dimensional dS spacetime is a hyperboloid in a (d+2)-dimensional Minkowski

spacetime described by

x20 − x21 − x22 − · · · − x2d+1 = −3/Λ ≡ −R2 . (1.3)

In the global coordinates, the dS metric is

ds2 = dt2 −R2 cosh2(t/R) dΩ2
d , (1.4)

while in the cosmological or Friedmann-Robertson-Walker (FRW) coordinates (which cover

only a portion of the global dS manifold (1.3)), it is given by

ds2 = dt2 − a2(t) dΩ2
d , (1.5)

where a(t) = eHt with H =
√

Λ/3. Our discussion below is focused on the case d = 3, or

four spacetime dimensions.
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Quantum excitations, including, inevitably, gravitons (quanta of the gravitational field

itself), modify at least slightly the relation between pressure and energy density. Multi-

particle quantum states typically have positive energy density and pressure, leading to

a value of w slightly larger than −1, and a pressure insufficiently negative to support

dS expansion.

The calculation of quantum contributions to the stress-energy tensor Tµν in dS space-

time is complex, depending on choices of regularization and vacuum state. For recent

progress on this problem, see [1–12].1 In this note, we explore the consequences of the

relatively well-understood dS temperature on the macroscopic dynamics of spacetime.

2 Back-reaction from de Sitter thermal spectrum

In dS spacetime, inertial observers see a thermal distribution of particles and a dS temper-

ature [13]. Observers who detect thermal particles will dispute the notion that the physical

(renormalized) Tµν is proportional to gµν (i.e., that the equation of state describes pure

vacuum energy or cosmological constant). This deviation from the classical form of Tµν

violates dS symmetry. It is due to a subtle infrared effect (dS temperature) and will not

necessarily appear in calculations of UV contributions to the renormalization of Tµν .

In [13], Gibbons and Hawking note that detector absorption of thermal radiation from

the dS horizon leads, via back-reaction, to shrinkage of the horizon. We are interested in an

averaged, semiclassical Tµν that appears on the right hand side of the Einstein equations,

and results from the steady occurrence of such events throughout spacetime. Interactions

will eventually equilibrate each particle species with the dS horizon temperature.

The fact that inertial observers in dS spacetime see a thermal distribution of particles

can also be understood in terms of the Unruh effect [14]. One can consider dS spacetime

as a timelike hyperboloid embedded in a Minkowski spacetime of one higher (spatial)

dimension [15–18]. Inertial dS observers, viewed from the perspective of the embedding

spacetime, are uniformly accelerated, and hence their detectors register a thermal bath.

From the Unruh perspective, it is clear that the energy of absorbed thermal particles comes

from work done by the accelerating force on the detector [14, 19]. From the dS perspective,

this energy comes from work that otherwise would have been performed by the negative

pressure. Thus, it clearly reduces the amount of expansion that would otherwise occur

(i.e., in the absence of quantum mechanics) in dS spacetime.

The dS temperature is T = R−1/2π, where R is the dS radius. The ratio of the

thermal energy density to cosmological constant is of order the latter in Planck units,

henceforth parametrized by ǫ. The local energy density at late times in the expanding

phase of dS spacetime is therefore slightly larger than in the classical case: ρ = Λ(1 + ǫ).

1Calculations of particle production due to cosmological expansion in [1–4] use the formalism of [5–12],

in which a vacuum state defined on an early time slice is shown to contain excitations of the vacuum

defined on a later slice. The vacuum states are defined by the condition that they are annihilated by the

destruction operators associated with mode functions of a particular time slice. This suffices to demonstrate

particle production, but it is not clear to us whether these calculations (and related results for the energy

momentum tensor) are sensitive to the dS temperature effects considered in this paper. See [13] for some

relevant discussion.
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The corresponding pressure is p ≈ −Λ(1 − ξ ǫ) where ξ = 1/3 and ξ = 0 correspond

to relativistic and non-relativistic thermal particles respectively. Thus w 6= −1 and the

expansion is no longer exactly exponential. However, from the Friedmann equation

ä

a
= −

4πG

3
(ρ+ 3 p) , (2.1)

it follows that as long as ρ > 0 and w < −1/3, acceleration is still positive. Therefore, an

accelerating expansion of dS spacetime is still expected. Using the equation of continuity

ρ̇+ 3 ȧ
a
(ρ+ p) = 0, one can show that

ǫ̇

ǫ
+ 3 (1 + ξ)

ȧ

a
= 0 . (2.2)

The above equation can be solved to give

ǫ ∼ a−3(1+ξ) . (2.3)

In fact, the situation is more complicated than suggested by the simple equations above.

As particles produced by earlier expansion are redshifted away, new particles are produced.

After many Hubble timescales, the average energy density due to quantum effects should

be approximately that of a thermal bath at the dS temperature. (The Bunch-Davies

vacuum [20], or an approximate version of it, is an attractor.)

Conservation of energy implies that the resulting proper volume of the universe V is

slightly smaller than in the classical case:

V ≈ Vclassical · (1− ǫ) = exp(3Ht) · (1− ǫ) , (2.4)

and so
log V

3t
≈ H − ǫ/3t . (2.5)

Thus, the spacetime which results from incorporating back-reaction of these quantum ef-

fects is no longer one of constant curvature. At late times, the classical and quantum

spacetimes differ macroscopically, despite the smallness of the dS temperature. Expan-

sions about the original (classical) dS spacetime should exhibit IR instabilities, since dS

is not an exact solution once back-reaction is taken into account. Earlier work has found

evidence of instabilities in dS [21–26], although the relation to our results is not clear.

The resulting quantum spacetime also cannot be time-reversal invariant. If the late

time thermal particle density were also found at early times, during the contracting phase

of global dS spacetime, the resulting blue-shift of thermal particles would lead to radical

departure from the vacuum Einstein equations. (This point has also been emphasized

in [1].) Therefore, the early and late time geometries, taking into account quantum effects,

cannot be the same.

3 Anti-de Sitter spacetime

Anti-de Sitter (AdS) spacetime is similarly a surface of constant (negative) curvature,

satisfying the constraint (for simplicity we restrict to AdS4)

T 2 +W 2 −X2 − Y 2 − Z2 = −3/Λ ≡ R2 (3.1)

– 3 –
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in five-dimensional Minkowski space with metric

ds2 = dT 2 + dW 2 − dX2 − dY 2 − dZ2 . (3.2)

Some AdS worldlines correspond to uniform acceleration in the embedding space [17,

18], again suggesting the presence of thermal (Unruh) radiation and modification of the

semiclassical geometry. However, AdS differs from dS in an important way: one can define

global static coordinates in AdS,

T = R
√

1 + r2/R2 cos(t/R)

W = R
√

1 + r2/R2 sin(t/R)

X = r cos θ

Y = r sin θ cosφ

Z = r sin θ sinφ (3.3)

with metric

ds2 =

(

1 +
r2

R2

)

dt2 −

(

1 +
r2

R2

)

−1

dr2 − r2 dΩ2 . (3.4)

Although this metric violates spatial translation invariance, the fact that it is static implies

that there is a quantum vacuum state that is time-independent: it does not exhibit particle

production or thermal radiation. For this special choice of vacuum state, AdS is stable to

the dS instability discussed above. This result is a consequence of the existence of a global

timelike Killing vector. Other choices of AdS vacuum state, such as the one appropriate

to the “cosmological” (non-static) coordinates (covering only a portion of global AdS)

T = R cos(t/R)

W = R sin(t/R) coshχ

X = R sin(t/R) sinhχ cos θ

Y = R sin(t/R) sinhχ sin θ cosφ

Z = R sin(t/R) sinhχ sin θ sinφ (3.5)

with metric

ds2 = dt2 −R2 sin2(t/R)
[

dχ2 + sinh2 χdΩ2
]

(3.6)

do in fact lead to particle production [27, 28] and consequent modification of the spacetime

geometry. The difference between the two cases is the choice of quantum vacuum state.

The global vacuum state is defined on a spacelike slice (e.g., at fixed t) in coordinates (3.3),

but this covers the range −∞ < T < ∞ in the embedding space. In contrast, a fixed t slice

in the cosmological coordinates corresponds to fixed T . Therefore, the global vacuum state

can impose conditions on past and future quantum states in the cosmological coordinates,

which lead to the cancelation of otherwise expected particle production due to acceleration.

Stability of AdS depends on choice of vacuum state, and the spacelike surface on which it

is defined.

– 4 –
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4 Remarks

The argument presented here is the simplest one we know of that indicates the instability

of dS spacetime once quantum effects are considered. The effect we identified is small,

but does break the dS symmetries even in the asymptotic regions of the manifold. We

do not exclude the possibility of more dramatic quantum effects, such as significant de-

cay of the cosmological constant itself [21, 22, 29–31]. Note that our effect specifically

depends on the back-reaction, via the Einstein equations, of the spacetime geometry to

modification of the equation of state. We do not address the possibility that a quantum

field (e.g., massive scalar) propagating on a fixed dS background could have some intrinsic

instability [21–26, 32].
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