5,257 research outputs found
Power loss and electromagnetic energy density in a dispersive metamaterial medium
The power loss and electromagnetic energy density of a metamaterial
consisting of arrays of wires and split-ring resonators (SRRs) are
investigated. We show that a field energy density formula can be derived
consistently from both the electrodynamic (ED) approach and the equivalent
circuit (EC) approach. The derivations are based on the knowledge of the
dynamical equations of the electric and magnetic dipoles in the medium and the
correct form of the power loss. We discuss the role of power loss in
determining the form of energy density and explain why the power loss should be
identified first in the ED derivation. When the power loss is negligible and
the field is harmonic, our energy density formula reduces to the result of
Landau's classical formula. For the general case with finite power loss, our
investigation resolves the apparent contradiction between the previous results
derived by the EC and ED approaches.Comment: 10 pages, 1 figure, Submitted to Phys. Rev.
In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation and oligochitosan interaction
The optimum media for multiplication of protocorm like bodies (PLBs) and shoot buds of Cymbidium La bell “Anna Belle” were studied in order to prepare the in vitro samples for irradiation. The values of LD50 (lethal dose of 50% samples) of PLBs, shoot buds and plantlets of tested Cymbidium after cultivation of 4 months were also determined about 35.0, 41.0 and 83.1 Gy, respectively. The addition of oligochitosan played as an very important trigger for promotion on the generation of shoot bud from PLBs after irradiation. The in vitro variations have been generated by γ-rays irradiation of PLBs with doses in range of 20 - 50 Gy. The highest mutant frequency (3.83‰) of C. La bell was found by the irradiation of PLB samples at 30 Gy. The different properties of obtained in vitro variations compared to wild types were found to be chlorophyll, short leaves, long leaves, and violet pericardium variations. The genetic relationships among generated variant lines in M1V4 and wild type were analyzed using RAPD techniques
Fluid Flows of Mixed Regimes in Porous Media
In porous media, there are three known regimes of fluid flows, namely,
pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are
usually treated separately in literature. To study complex flows when all three
regimes may be present in different portions of a same domain, we use a single
equation of motion to unify them. Several scenarios and models are then
considered for slightly compressible fluids. A nonlinear parabolic equation for
the pressure is derived, which is degenerate when the pressure gradient is
either small or large. We estimate the pressure and its gradient for all time
in terms of initial and boundary data. We also obtain their particular bounds
for large time which depend on the asymptotic behavior of the boundary data but
not on the initial one. Moreover, the continuous dependence of the solutions on
initial and boundary data, and the structural stability for the equation are
established.Comment: 33 page
Broadband stimulated four-wave parametric conversion on a tantalum pentoxide photonic chip
We exploit the large third order nonlinear susceptibility (?(3) or “Chi 3”) of tantalum pentoxide (Ta2O5) planar waveguides and realize broadband optical parametric conversion on-chip. We use a co-linear pump-probe configuration and observe stimulated four wave parametric conversion when seeding either in the visible or the infrared. Pumping at 800 nm we observe parametric conversion over a broad spectral range with the parametric idler output spanning from 1200 nm to 1600 nm in infrared wavelengths and from 555 nm to 600 nm in visible wavelengths. Our demonstration of on-chip stimulated four wave parametric conversion introduces Ta2O5 as a novel material for broadband integrated nonlinear photonic circuit applications
Statistics of Lyapunov exponent in one-dimensional layered systems
Localization of acoustic waves in a one dimensional water duct containing
many randomly distributed air filled blocks is studied. Both the Lyapunov
exponent and its variance are computed. Their statistical properties are also
explored extensively. The results reveal that in this system the single
parameter scaling is generally inadequate no matter whether the frequency we
consider is located in a pass band or in a band gap. This contradicts the
earlier observations in an optical case. We compare the results with two
optical cases and give a possible explanation of the origin of the different
behaviors.Comment: 6 pages revtex file, 6 eps figure
Poincar\'{e} cycle of a multibox Ehrenfest urn model with directed transport
We propose a generalized Ehrenfest urn model of many urns arranged
periodically along a circle. The evolution of the urn model system is governed
by a directed stochastic operation. Method for solving an -ball, -urn
problem of this model is presented. The evolution of the system is studied in
detail. We find that the average number of balls in a certain urn oscillates
several times before it reaches a stationary value. This behavior seems to be a
peculiar feature of this directed urn model. We also calculate the Poincar\'{e}
cycle, i.e., the average time interval required for the system to return to its
initial configuration. The result can be easily understood by counting the
total number of all possible microstates of the system.Comment: 10 pages revtex file with 7 eps figure
Altered Activation Of The Rostral Anterior Cingulate Cortex In The Context Of Emotional Face Distractors In Children And Adolescents With Anxiety Disorders
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109274/1/da22289.pd
- …
