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Add-on plasmonic patch as a universal
fluorescence enhancer
Jingyi Luan1, Jeremiah J. Morrissey2,3, Zheyu Wang1, Hamed Gholami Derami1, Keng-Ku Liu1, Sisi Cao1, Qisheng Jiang1,
Congzhou Wang1, Evan D. Kharasch2,3,4,5, Rajesh R. Naik6 and Srikanth Singamaneni1,3

Abstract
Fluorescence-based techniques are the cornerstone of modern biomedical optics, with applications ranging from
bioimaging at various scales (organelle to organism) to detection and quantification of a wide variety of biological
species of interest. However, the weakness of the fluorescence signal remains a persistent challenge in meeting the
ever-increasing demand to image, detect, and quantify biological species with low abundance. Here, we report a
simple and universal method based on a flexible and conformal elastomeric film with adsorbed plasmonic
nanostructures, which we term a “plasmonic patch,” that provides large (up to 100-fold) and uniform fluorescence
enhancement on a variety of surfaces through simple transfer of the plasmonic patch to the surface. We demonstrate
the applications of the plasmonic patch in improving the sensitivity and limit of detection (by more than 100 times) of
fluorescence-based immunoassays implemented in microtiter plates and in microarray format. The novel fluorescence
enhancement approach presented here represents a disease, biomarker, and application agnostic ubiquitously
applicable fundamental and enabling technology to immediately improve the sensitivity of existing analytical
methodologies in an easy-to-handle and cost-effective manner, without changing the original procedures of the
existing techniques.

Introduction
Fluorescence probes and fluorometric approaches have

been ubiquitously employed in biomedical research, not
only as imaging tools for the visualization of the location
and dynamics of cells and of various sub-cellular species
and molecular interactions in cells and tissues but also as
labels in fluoroimmunoassays for the detection and
quantification of molecular biomarkers. Fluorescence-
based techniques have radically transformed biology and
life sciences by unraveling the genomic, transcriptomic,
and proteomic signatures of disease development, pro-
gression, and response to therapy1–3. However, the

occurrence of a “feeble signal” has been a persistent and
recurring problem in the battery of detection and imaging
techniques that rely on fluorescence. Overcoming this
fundamental challenge without the use of specialized
reagents, equipment, or significant modifications to well-
established procedures is a holy grail in the field of bio-
medical optics. For example, there is an urgent need for
ultra-sensitive fluoroimmunoassays that can be broadly
adopted by most biological and clinical laboratories for
the detection of target biological species with low
abundance.
Improving the signal-to-noise ratio of the assays with-

out deviating from the existing assay protocols will also
relax the stringent requirements of high sensitivity and
bulky photodetectors, shorten the overall assay time,
lower the cost of implementation, eliminate cross-
laboratory cross-platform inconsistency, and potentially
propel these technologies to use in point-of-care, in-field,
and resource-limited settings. Various techniques,
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including multiple-fluorophore labeling4, rolling cycle
amplification5,6, and photonic crystal enhancement7, have
been introduced to improve the signal-to-noise ratio of
fluorescence-based imaging and sensing techniques.
Despite the improved sensitivity, these technologies have
not been widely adopted in research and clinical settings
because most of them require significant modifications to
the existing practices such as additional steps that sig-
nificantly prolong the overall operation time, the need for
specialized and expensive read-out systems, non-
traditional data processing and analysis, or the use of
temperature-sensitive reagents, which usually require
tightly controlled transport and storage conditions.
Plasmonics has been recognized as a simple and highly

effective approach for enhancing fluorescence. Enhance-
ment of the emission of fluorophores in close proximity to
plasmonic nanostructures is attributed to the enhanced
electromagnetic field (local excitation field) at the surface
of the plasmonic nanostructures and the decrease in the
fluorescence lifetime due to the coupling between the
excited fluorophores and the surface plasmons of the
nanostructures8–17. To date, various plasmonic substrates,
such as periodic gold arrays18,19 and metal nanoislands11–
14, have been shown to give rise to strong fluorescence
enhancement. Although these plasmonic surfaces are
highly attractive, their real-world application, for example,
in fluoroimmunoassays, has been limited. The limited
application of plasmon-enhanced fluoroimmunoassays in
research and clinical settings is due to several factors: (i)
Most of the existing techniques require the fluor-
oimmunoassay to be performed on pre-fabricated sub-
strates, typically a rigid glass slide with metal
nanostructures deposited on it, instead of standard or
sometimes irreplaceable bioanalytical platforms (e.g., 96-
well plates and nitrocellulose membranes), which sig-
nificantly limits the broad applicability of the techniques;
more importantly, the requirement for the use of special
substrates limits cross-platform and cross-laboratory
consistency and seamless integration with widely
employed bioanalytical procedures, representing a major
bottleneck for the exploitation of conventional plasmon-
enhanced fluorescence. (ii) Non-traditional bioconjuga-
tion procedures, complex interactions between biomole-
cules and metal nanostructures, and poor stability of
biomolecules (e.g., antibodies) immobilized on metal
surfaces not only complicate the assay procedures but also
impose further technical challenges in their widespread
application20. Thus, it is imperative to address these
challenges to propel the plasmon-enhanced fluorescence
techniques to practical applications.
Here, we introduce a simple, universal, and “add-on”

fluorescence enhancement technique based on a “plas-
monic patch” that can be applied on various fluorescent
surfaces to achieve large and uniform fluorescence

enhancement. To the best of our knowledge, this work
represents the first demonstration of flexible plasmonics
for fluorescence enhancement. In stark contrast with the
existing plasmon enhancement techniques, which require
significant modifications of the existing fluor-
oimmunoassay methods, the plasmonic patch approach
demonstrated here requires virtually no change of the
existing protocols except for the addition of the “patch” as
the new, final step. Due to the enhanced electromagnetic
field, the plasmonic patch can efficiently enhance the
fluorescence by up to 100 times, leading to an ~300-fold
increase in assay sensitivity. More importantly, the plas-
monic patch exhibits excellent stability and low cost and
entails the use of an extremely user-friendly protocol.
This represents a “ready-to-use” technique that can be
integrated with current biomedical research and clinical
infrastructure to generate immediate results and impact.

Materials and methods
Fabrication of a plasmonic patch
Sylgard 186 (Dow Corning) polydimethylsiloxane

(PDMS) elastomer was mixed at a 10:1 (base to curing
agent) ratio. The prepolymer was spin-coated at 3000 rpm
for 30 s on a polystyrene dish with a diameter of 3.5 cm.
PDMS was then cured at 70 °C for 15 h. Once cured,
PDMS was treated with oxygen plasma for 3 mins and
subsequently immersed into 0.2% aqueous poly(styrene
sulfonate) (PSS) solution for 20mins. PSS treatment gave
rise to a negative charge on the surface of the PDMS film,
facilitating the absorption of positively charged plasmonic
nanoparticles through electrostatic interactions. Plas-
monic nanoparticle solution was centrifuged and redis-
persed into a specific volume of nanopure water (for
details, please see the Supporting Information). PSS-
treated PDMS was incubated with the plasmonic nano-
particle solution for 15 h in dark conditions. Subse-
quently, PDMS was rinsed with nanopure water and blow
dried with nitrogen, leaving a surface with uniformly
adsorbed plasmonic nanoparticles.

Polymer spacer on a plasmonic patch
Eight microliters of (3-aminopropyl)trimethoxysilane

(APTMS) and the desired amount of trimethox-
ypropylsilane (TMPS (0–8 µl)) (for details, please see the
Supporting Information) were added to 3ml of
phosphate-buffered saline (1× PBS). The plasmonic patch
was incubated in the above solution for 2 h. After 2 h, the
plasmonic patch was rinsed with PBS and nanopure water
followed by blow drying with nitrogen gas.

Fluorescence-linked immunosorbent assay with a
plasmonic patch
Fluorescence-linked immunosorbent assay was first

implemented using 96-well plates with a glass bottom
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(Cellvis). The glass surface of each well was treated to
achieve aldehyde functionality. The subsequent proce-
dures were identical to those of enzyme-linked immu-
nosorbent assay (ELISA) (R&D Systems (DY1750B,
DY1757)) until the streptavidin binding step. Instead of
HRP-labeled streptavidin, 100 µl of dye-labeled streptavi-
din (CW800 or LT680 (LICOR)) was diluted to the final
concentration of 50 ng/ml using a reagent diluent and
added to each well, followed by a 20-min incubation. A
plasmonic patch was subsequently transferred to each
well of the 96-well plate. The LICOR Odyssey CLx
scanner was used to scan the 96-well plate. For the
fluorescence-linked immunosorbent assay performed
using plastic bottom 96-well plates, the procedure
remained the same except for the omission of the surface
modification steps.

Fluorescence enhancement on a protein microarray
Commercialized protein microarray chip kits were

purchased from RayBiotech (Custom G-Series Antibody
Array, AAX-CUST-G). Antibodies were printed on a glass
slide with four subarrays available per slide. The slide was
blocked by a blocking buffer (in kit) for 30 mins. Patients’
and volunteers’ urine samples were diluted twice using the
blocking buffer, and 90 µl of the diluted samples was
added into each sub-well of the microarray chip, followed
by a 2-h incubation at room temperature. The chip was
then washed thoroughly with the wash buffer (in kit).
Seventy microliters of biotin-conjugated anti-cytokines
(in kit) was added to each subarray, and the chip was
incubated at room temperature with gentle shaking. After
2 h, the chip was washed, 70 µl of streptavidin-CW800
(100 ng/ml in blocking buffer, LICOR) was added, and the
plate was incubated under dark conditions for 20 mins.
The chip was washed thoroughly first with wash buffer
and then with nanopure water and was then blow dried
under nitrogen gas. The glass chip was scanned using a
LICOR Odyssey CLx scanner. A plasmonic patch was cut
into 1 × 1 cm2 pieces and applied to the top of each sub-
array, followed by the attachment of a gold-coated
reflective film with the same dimensions.

Results and discussion
We introduce a novel material platform, namely, a

“plasmonic patch,” for the enhancement of fluorescence
on arbitrary surfaces. The fluorescence enhancement
demonstrated here involves the transfer of a plasmonic
patch, a transparent elastomeric film with adsorbed
rationally designed metal nanostructures, onto a fluor-
escent surface to achieve conformal contact (Fig. 1a). The
plasmonic nanostructures on the elastomeric film come
into close proximity to the fluorescent species on the
surface, resulting in a large and uniform enhancement of
the fluorescence.

Plasmonic patch fabrication and material characterization
A thin PDMS layer (~30 µm thick) is employed as the

“patch” material due to its high mechanical flexibility
(elastic modulus ~1MPa) (Fig. 1b), optical transparency
(>95% transmittance within the wavelength range of
400–900 nm)21, excellent processability, and low cost22.
The elastomeric nature of the PDMS enables conformal
contact (down to the atomic level) of the patch with
diverse surfaces, which is critical for fluorescence
enhancement because the enhanced electromagnetic field
of the plasmonic nanostructures is limited to the first few
nanometers from the metal surface23. The plasmonic
patch can be tailored for a specific fluorophore by max-
imizing the overlap between the localized surface plasmon
resonance (LSPR) of the nanostructures and the optical
absorption (excitation source) of the fluorophore to
achieve the highest enhancement24,25. As representative
examples, we fabricated plasmonic patches using three
distinct nanostructures: (i) gold core-silver shell nano-
cubes (Au@Ag nanocubes) with an LSPR wavelength of
490 nm (Au@Ag-490 henceforth, edge length ~48.5 nm)
and gold nanorods (AuNRs) with a longitudinal LSPR
wavelength of (ii) 670 nm (AuNR-670 henceforth, length
~112.2 nm, diameter ~54.5 nm) and (iii) 760 nm (AuNR-
760 henceforth, length ~62.7 nm, diameter ~18.1 nm)
(Fig. 1c). Scanning electron microscopy (SEM) images
indicate a highly uniform distribution of the plasmonic
nanostructures on the PDMS film, with no sign of aggre-
gation or patchiness (Fig. 1d), ensuring nanoscale con-
formal contact between the plasmonic patch and the
surface of interest. Extinction spectra obtained from the
plasmonic patches further validate the absence of aggre-
gates (Figure S1). The final density of the plasmonic
nanostructures on the PDMS was determined to be 31/
µm2 for Au@Ag-490, 21.4/µm2 for AuNR-670, and 169/
µm2 for AuNR-760. The flexible plasmonic patches exhibit
a distinct and uniform color corresponding to the LSPR
wavelength of the nanostructures (Fig. 1e). The three
plasmonic patches described above were designed for
fluorescein isothiocyanate (FITC) (Au@Ag-490), LT680
(AuNR-670), and 800CW (AuNR-760), chosen in this
study as representative fluorophores. Transfer of the cor-
responding plasmonic patches to silicon surfaces coated
with FITC, LT680, and 800CW resulted in a uniform
enhancement of the fluorescence from these surfaces
(Fig. 1f). Additionally, the transfer process is easy, and its
implementation does not require special training for users
(Figure S2). The fluorescence intensity in the presence of a
plasmonic patch was found to be nearly 50 times higher
than that obtained from an unenhanced surface under
identical illumination conditions (Figure S3). In addition
to silicon, we applied plasmonic patches to glass, nitro-
cellulose, and polystyrene (a common material for
microtiter plates) surfaces, which are extensively employed
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in various fluorescence-based detection, quantitative sen-
sing, and imaging techniques. The excellent conformality
of the plasmonic patch with all of the above materials
resulted in large fluorescence enhancements of the dyes
deposited on these surfaces. The intensity cross-section
profiles obtained for these different materials demonstrate
up to 80-fold enhancement in the fluorescence from the

regions with the plasmonic patch (center) compared to
unenhanced regions (periphery) (Figure S4).

Distance-dependent fluorescence enhancement and
spacer layer
It is known that the evanescent nature of the enhanced

electromagnetic field at the surface of plasmonic
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Fig. 1 Plasmonic patch fabrication and material characterization. a Schematic illustration of the fabrication of a plasmonic patch and its
application in fluoroimmunoassays. A large enhancement in the fluorescence signal is simply achieved by the transfer of the plasmonic patch onto a
surface with fluorescent species. This “add-on” step does not change the well-established procedures of current fluoroimmunoassays and can thus be
seamlessly integrated with a variety of existing assays to significantly enhance their fluorescence. b Top: Photograph showing the transfer of a
plasmonic patch to a planar surface. Middle: SEM image demonstrating the flexibility, as well as conformability to the substrate, of the plasmonic
patch. Bottom: SEM image of the cross-section of the plasmonic patch showing an average thickness of 30 µm. c Normalized extinction spectra of
aqueous solutions of the three representative plasmonic nanostructures employed in this study (from left to right: Au@Ag-490, AuNR-670, and AuNR-
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nanostructures. e Photograph of plasmonic patches modified with various nanostructures (left). The flexibility of the plasmonic patch is further
demonstrated by rolling it around a cylindrical support (right). The scale bar represents 1 cm. f Fluorescence map of three fluorophores adsorbed on
a silicon substrate in the presence and absence of a plasmonic patch (left scale bar represents 10 µm; middle and right scale bars represent 1 mm)
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nanostructures results in a highly distance-dependent
enhancement of Raman scattering and fluorescence at the
surface of the plasmonic nanostructures26–30. When
fluorophores are brought in direct contact (or in extre-
mely close proximity) to plasmonic nanostructures, non-
radiative energy transfer between the fluorophore and
metal surface results in fluorescence quenching31. On the
other hand, an increase in the distance between the
fluorophores and metal nanostructures results in a
decrease in the enhancement due to the decay in the
electromagnetic field from the surface of the nanos-
tructures. Taken together, these effects mean that an
optimal distance between the metal surface and fluor-
ophore is critical to ensure the maximum enhancement32.
To achieve an optimal distance between the plasmonic
nanostructures and fluorophores of interest, we employed
a polysiloxane copolymer film formed on the surface of
the plasmonic patch as a spacer layer (Fig. 2a). TMPS and
APTMS, which are hydrolytically unstable, were copoly-
merized onto the plasmonic patch composed of AuNR-
760. The two monomers underwent rapid hydrolysis and
subsequent condensation, yielding an amorphous copo-
lymer layer (Figure S5A)33. An increase in the thickness of
the spacer layer resulted in a gradual redshift of the
longitudinal LSPR wavelength of AuNRs due to the
increase in the refractive index of the medium sur-
rounding the nanostructures (Figure S5B). We estimated
the thickness of the spacer layer for the different TMPS
amounts used during the polymerization (see Supporting
Information for an estimation of the spacer thickness,
Figure S5C–I). With the increase in the spacer layer
thickness, we observed a steep increase in the fluores-
cence enhancement efficacy of CW800 followed by a
relatively shallow reduction (Fig. 2b, c). Atomic force
microscopy (AFM) images depicted the morphology
change of the plasmonic patch after the formation of the
polysiloxane layer, which further confirmed the uniform
deposition of the polymer spacer onto the AuNRs
(Fig. 2d). Plasmonic patches with the optimal spacer layer
were used in the subsequent studies (described below).

Patterned plasmonic patch and localized fluorescence
enhancement
To demonstrate that the fluorescence enhancement

induced by the “plasmonic patch” is localized to areas that
are in conformal contact with the plasmonic patch, we
employed a patterned patch layer with well-defined sur-
face-relief structures on both microscales and macro-
scales. Transfer of the patterned plasmonic patch onto a
silicon substrate with uniformly adsorbed fluorophores
resulted in conformal contact between the raised regions
of the plasmonic patch and the substrate, while the
surface-relief regions remained far from the substrate
(Fig. 3a). As representative microscale structures, we

employed plasmonic patches with a stripe array and a
square lattice composed of Au@Ag-490 (Fig. 3b, c). Insets
of the SEM images depict the uniform adsorption of the
nanostructures in both the elevated and surface-relief
regions of the microstructured PDMS surface. AFM
images reveal that the depth of the ridges in the stripe
array are ~400 nm (Fig. 3d). The square lattice array, on
the other hand, is composed of three regions with distinct
heights (pores, struts, and nodes with increasing height)
(Fig. 3e). After the transfer of the patterned plasmonic
patch onto silicon coated with FITC, the plasmonic patch
exhibited selective enhancement of fluorescence from the
raised regions of the plasmonic patch that came into
conformal contact with the silicon surface. In the case of
the plasmonic patch with the stripe pattern, the fluores-
cence image shows arrays of bright and dark stripes cor-
responding to the raised and surface-relief regions of the
plasmonic patch, respectively (Fig. 3f). Notably, the
fluorescence enhancement in the case of the square array
is confined to nodes, indicating that the struts and pores
are too far from the surface to enhance the fluorescence
(Fig. 3g). In addition to micropatterns, we also fabricated a
plasmonic patch with a feature size ranging from tens of
microns to millimeters (Fig. 3h, i and Figure S6). Transfer
of plasmonic patches engraved with a square array of
circular holes (with Au@Ag-490) and the “Washington
University in St. Louis” logo (with AuNR-760) resulted in
fluorescence images with a square array of dark circles
and the logo with high image quality and feature fidelity
(Fig. 3h, i).

Plasmonic patch-enhanced fluoroimmunoassays
We now turn our attention to the application of the

plasmonic patch as a universal fluorescence enhancer in
fluoroimmunoassays. A typical sandwich fluor-
oimmunoassay involves the following major steps: (i)
capture of the target antigen by an immobilized antibody;
(ii) binding of the biotinylated detection antibody to the
captured antigen; and (iii) binding of fluorescently labeled
streptavidin (Fig. 4a). We hypothesize that the addition of
a plasmonic patch after the last step (i.e., binding of the
fluorescently labeled streptavidin) can result in a large
enhancement of the fluorescence intensity and sig-
nificantly improve the limit-of-detection (LOD given by
the average fluorescence intensity at zero concentration
(blank) plus three times its standard deviation). To verify
this hypothesis, we implemented a fluoroimmunoassay in
a heterogeneous, solid-phase format by using a 96-well
microtiter plate as a sampling platform, a standard assay
format extensively employed in bioanalytical research and
clinical diagnostics (Fig. 4a).
We used two early-stage biomarkers for acute kidney

injury (AKI) and chronic kidney disease (CKD), namely,
kidney injury molecule-1 (KIM1) and neutrophil
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gelatinase-associated lipocalin (NGAL), as representative
examples for probing the efficacy of the plasmonic patch
in improving the bioanalytical parameters of fluor-
oimmunoassays34–36. The assays were first implemented
on a 96-well plate with a glass bottom. In the KIM1
immunoassay, we used LT680 as the fluorescence tag and
the plasmonic patch based on AuNR-670 as the enhancer.
To probe the enhancement in the sensitivity and LOD,
serial dilutions of KIM1 of known concentrations (5 ng/
ml to 500 fg/ml) in PBS with 1% bovine serum albumin
(BSA) were employed as standards. Fluorescence images
obtained after the application of the plasmonic patch
revealed a strong enhancement in the fluorescent inten-
sity compared to that obtained prior to the application of
the plasmonic patch (Fig. 4b). The fluorescence signal
from the unenhanced (pristine) spots was detectable only

for the two highest concentrations (5 and 0.5 ng/ml)
(Fig. 4b, left and middle images). On the other hand, the
fluorescence signal with the plasmonic patch could be
detected down to 500 fg/ml (Fig. 4b). The
concentration–response plot revealed a 36-fold
enhancement in the fluorescence intensity with the plas-
monic patch compared to the unenhanced signal (Fig. 4c).
The LOD (3σ) values of the unenhanced and plasmon-
enhanced KIM1 assays were determined to be 140 and
0.5 pg/ml, respectively, representing a 280-fold improve-
ment in the LOD. Consequently, the enhanced KIM1
assay exhibited a three orders of magnitude higher
dynamic range compared to the unenhanced assay. The
fluorescence signal after the application of the plasmonic
patch exhibited excellent stability even after 4 weeks of
storage under dark conditions (Figure S7). To
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demonstrate the broad applicability of the plasmon-
enhanced fluoroimmunoassay, we used NGAL as
another representative example. CW800 (conjugated to
streptavidin) was used as the fluorescence label to
demonstrate the tunability of the plasmonic patch. Fol-
lowing the transfer of the plasmonic patch, we observed a
fluorescence enhancement of up to 103 times and an
~100-fold lower LOD compared to the unenhanced
NGAL assay (Fig. 4d, e). Consistently, the NGAL assay
implemented on a common 96-well plate with a plastic
bottom (instead of a glass bottom) also exhibited a strong
fluorescence enhancement in the presence of the plas-
monic patch (Figure S8), further validating the plasmonic
patch as a substrate material-agnostic technology.
ELISA is widely employed in clinical and research set-

tings and is often considered as the “gold standard” for
protein biomarker detection and quantification. We
compared the performance of the plasmon-enhanced
fluoroimmunoassay with ELISA using KIM1 as a repre-
sentative biomarker. In addition to simplifying the overall
assay procedure (e.g., obviating the need for enzymatic
amplification), the LOD of the plasmon-enhanced fluor-
oimmunoassay was found to be ~30 times lower (0.5 pg/
ml) than that of ELISA (15.6 pg/ml) (Fig. 4c and Figure
S9). Notably, the dynamic range of the enhanced fluor-
oimmunoassay spanned five log orders of KIM1

concentration, while the dynamic range of ELISA was
only 2.5 log orders of KIM1 concentration (Fig. 4c and
Figure S9). The higher dynamic range of the enhanced
fluoroimmunoassay is expected to enable the quantifica-
tion of a wider range of biomarker concentrations in
human urine samples, as described below.
Following the successful demonstration of the plas-

monic patch-enhanced fluoroimmunoassay, we set out to
analyze urine samples from patients and self-described
healthy volunteers in order to determine the concentra-
tions of KIM1 and NGAL. To demonstrate the wide
applicability of the technique, we implemented KIM1 and
NGAL fluoroimmunoassays on glass and plastic bottom
96-well plates, respectively. The urine samples were
diluted with 1% BSA in PBS to minimize the confounding
from inter-individual differences in urine pH and solute
content. For KIM1 (10-fold dilution) and NGAL (40-fold
dilution), the plasmon-enhanced fluoroimmunoassay
exhibited a dramatic increase in the fluorescence com-
pared to the unenhanced fluoroimmunoassay (Fig. 5a
(KIM1) and Fig. 5b (NGAL)). The enhanced fluorescence
signal was used to quantify the biomarker concentration
in the urine samples. We also used standard ELISA to
determine the KIM1 and NGAL concentrations in the
human urine samples. The concentrations of the bio-
marker in urine determined by the above three assays
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(unenhanced and enhanced fluoroimmunoassays and
ELISA) are compared in Figure 5c (KIM1) and Fig. 5d
(NGAL). The unenhanced fluoroimmunoassay was not
able to detect KIM1 or NGAL in any of the human urine
samples. In stark contrast, the plasmon-enhanced fluor-
oimmunoassay was able to quantify both KIM1 and
NGAL concentrations in all human urine samples, some
of which were even lower than the LOD of ELISA. For the
samples that were quantifiable using both ELISA and
enhanced fluoroimmunoassay, the concentration of the
biomarker determined using the enhanced fluor-
oimmunoassay showed excellent agreement with that
determined using “gold standard” ELISA for both KIM1
(r2= 0.934) and NGAL (r2= 0.998) (Fig. 5e, f).
The biomarker concentrations in the human urine

samples were determined by accounting for the dilutions

in each of the assays, and the results are presented in
Figure 5g. The estimated glomerular filtration rate (eGFR)
determined from the serum creatinine concentration is
the standard metric of kidney function37. eGFR decreases
to below 90 (ml/min) as the kidney function declines37.
The two urine biomarkers can provide diagnostic kidney
disease information beyond that of eGFR. NGAL and
KIM1 concentrations in healthy humans are <20 and <1
ng/ml, respectively. In AKI, NGAL exceeds 100 ng/
ml36,38,39. Taking patients #24 and #37 as examples, while
their eGFR levels (153 and 90ml/min) are within the
normal range, their NGAL and KIM1 concentrations were
significantly higher, indicating a high risk of chronic
kidney disease (#24) and AKI (#37). Notably, for diabetics,
the eGFR levels tend to increase to 150 ml/min followed
by a significant decrease (down to 30 ml/min) with time.
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The higher eGFRs of patients #24 and #37 and their
slightly elevated KIM1 and NGAL concentrations may be
due to the patients being diabetic, which is a risk factor for
chronic kidney disease (Fig. 5g)40.

Application of a plasmonic patch on a protein microarray
To demonstrate the applicability of the plasmonic patch

in enhancing the sensitivity of immuno-microarrays, we
customized a microarray of antibodies to the biomarkers
of kidney injury as a representative example to test the
performance of the plasmonic patch in a multiplexed and
high-throughput biosensing platform (Fig. 6a). This
microarray is composed of eight capture antibodies cor-
responding to the AKI and CKD protein biomarkers,
printed in duplicate on a glass slide isolated by a plastic
frame with a feature diameter of 150 µm. Biotinylated
immunoglobulin Gs of three gradient concentrations were
printed in duplicate as positive controls (Fig. 6b, left
schematic showing the protein layout on the microarray).
Six human urine samples were diluted twofold using a
blocking buffer and added to each sub-well on the glass
slide. Subsequently, the captured biomarker proteins were
exposed to a biotinylated detection antibody cocktail
followed by exposure to CW800-labeled streptavidin. The
conventional microarray procedure ends at this step, at
which point the biomarker concentration is quantified by
analyzing the localized fluorescent signal on the respective
antibody spot. The enhanced assay demonstrated here
involves the addition of a 1 × 1 cm2 plasmonic patch
modified with AuNR-760 on top of each array (see
Methods for details).
The fluorescence map from a single sample (patient

#81, Fig. 6b, right panels) is informative. In addition to the
large enhancement of the weak fluorescence of albumin,
cystatin-C, β2 microglobulin (Beta 2M), and NGAL in the
unenhanced microarray, the plasmonic patch enabled the
detection and quantification of analytes that could not be
detected at all by the conventional method (red boxes in
Figure 6b). These new analytes are tissue inhibitor of
metalloproteinases 2, KIM1, and insulin-like growth
factor-binding protein 7, which are specific and important
biomarkers for early detection of AKI27,41. In addition to
patient #81, the plasmonic patch consistently enhanced
the fluorescence signals of the microarray exposed to
urine samples from patients #29, #37, and #67 and healthy
volunteers #M70 and #403 (Figure S10). Quantitative
measurement of the antibody spot intensity from the
urine of the six individuals showed 20-fold to 137-fold
increase in the fluorescence of several analytes and the
detection of other analytes enabled only by the enhance-
ment from the plasmonic patch (Fig. 6c, the [+] mark
indicates that the biomarker is only detected with the
plasmonic patch). Comparison between the unenhanced
and plasmonic patch-enhanced fluorescence heat maps

from the six donors further revealed the high signal-to-
noise ratio and a broadened dynamic range (Fig. 6d).

Conclusions
Most previous plasmon-enhanced fluorescence assays

rely on engineering the substrate to be plasmonically
active through either the deposition of metal islands or
adsorption of plasmonic nanostructures. These methods
naturally require the utilization of special surfaces and
possibly significant alterations of the read-out devices and
the bioassay protocol. Here, we demonstrated an alter-
native method in which the enhancement is achieved by a
simple transfer of a plasmonic patch onto a surface with
fluorescent species. This novel approach not only obviates
the need for special substrates or tedious bioconjugation
procedures but also offers excellent tunability of the
plasmonic properties (over the entire visible and near-
infrared wavelength range) and distance between the
metal surface and fluorophores. Notably, the magnitude
of the fluorescence enhancement obtained using plas-
monic substrates described in the past is highly dependent
on the size of the capture antibody, antigen, and detection
antibody that exist between the plasmonic nanostructures
on the substrate and the fluorophores. The enhancement
is therefore dictated by the preset “biological spacer,”
leaving little control over the key design parameter for
maximum enhancement, namely, the spacer layer thick-
ness. By contrast, as an “add-on-top” layer, the plasmonic
patch demonstrated here enables complete control over
the distance between the plasmonic nanoantennas and
fluorescent species. The facile control of the spacer
thickness ensures the highest fluorescence enhancement
despite the variations in the immunofluorescent assays,
which is especially important in multiplexed platforms.
We also demonstrated the application of this platform

technology in enhancing the bioanalytical parameters
(sensitivity, LOD, and dynamic range) of fluor-
oimmunoassays implemented in a standard 96-microplate
format and an antibody microarray. The plasmonic patch
consistently resulted in a more than two orders of mag-
nitude fluorescence intensity enhancement, leading to an
~300-fold lower LOD and a three orders of magnitude
higher dynamic range. The improvement in the bioana-
lytical parameters was found to be consistent across dif-
ferent assay formats, target biomarkers, and fluorophores.
Significantly, this method can be implemented with
existing bioassays without any modification of the stan-
dard operating procedures, additional operational train-
ing, or modification of the read-out devices. As a part of
the rigorous validation of this technology, we analyzed
urine samples from patients and healthy volunteers.
Unlike the unenhanced fluoroimmunoassay and ELISA,
the plasmon-enhanced fluoroimmunoassay enabled the
detection and quantification of low concentration
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biomarkers from all patients and healthy volunteers. The
added sensitivity of the plasmon-enhanced assay enables
facile quantification of the biomarkers with low abun-
dance and provides physiological and pathological infor-
mation that is often missed by the conventional
immunoassays.
Multiplexed microarrays based on fluorescence are

extensively employed in expression profiling, drug-target
binding assays, and high-throughput proteomics42,43.
Compared to a singlex platform, such as ELISA, the
technique presented here allows researchers and clin-
icians to examine a large number of biomarkers in parallel
to achieve patient stratification and monitoring of multi-
factorial diseases with a limited sample volume, thereby
minimizing the assay cost and time for the performance of
multiple individual biomarker assays. Moreover, high-
throughput profiling of the biomarkers enables persona-
lized medicine with holistic, molecular fingerprinting of
diseases, accommodating greater diagnostic resolution
between closely related disease phenotypes44. The sensi-
tivity and specificity for the diagnosis of kidney disease
have been proven to be significantly greater when com-
bining the urinary levels of multiple biomarkers compared
to the use of individual biomarkers36. However, despite
the availability of various commercialized products, this
multiplexed methodology suffers from inferior sensitivity
and relatively high LOD compared to ELISA, which hin-
ders its widespread application.
The plasmonic patch demonstrated here overcomes the

above-mentioned challenges and provides a path forward
for broad application of multiplexed microarrays. We
have demonstrated the application of the plasmonic patch
in the multiplexed detection of a panel of biomarkers for
kidney diseases. Our results suggest that the plasmonic
patch could significantly enhance the ability to elucidate
low-level kidney function parameters (biomarkers) to
provide holistic kidney disease information. Notably, the
better performance of the multiplexed microarray origi-
nates from the extremely simple “patch transfer” process,
which does not alter the established process flow of
immuno-microarrays. Additionally, this technique repre-
sents an inexpensive approach for the enhancement of
fluorescence, and the cost for one piece of plasmonic film
(1 × 1 cm2) was estimated to be approximately US$0.05.
We expect that this easily deployed technique could be
seamlessly applied to a broad range of multiplexed plat-
forms in diagnostics, proteomics, and genetics to address
the unmet need for a greater signal intensity.
Our work here has primarily focused on the introduc-

tion of the plasmonic patch concept and on demon-
strating its application in the enhancement of the
bioanalytical parameters of fluoroimmunoassays imple-
mented in microtiter plates and microarrays. However, it
is important to note that this technique has broad

implications in bioimaging, blotting, histology, and vir-
tually any other application involving fluorescence. Due to
the minimal perturbation of the standard materials and
procedures, this novel technique can be readily adapted to
a number of different fluorescence-based technologies to
alleviate the waste of resources arising from facility
update, reduce the assay cost and time, eliminate cross-
platform inconsistency, and potentially propel these
technologies to use in point-of-care, in-field and resource-
limited settings.
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