3,299 research outputs found

    Long-term impacts of tropical storms and earthquakes on human population growth in Haiti and the Dominican Republic

    Get PDF
    Since the 18th century, Haiti and the Dominican Republic have experienced similar natural forces, including earthquakes and tropical storms. These countries are two of the most prone of all Latin American and Caribbean countries to natural hazards events, while Haiti seems to be more vulnerable to natural forces. This article discusses to what extent geohazards have shaped both nation's demographic developments. The data show that neither atmospheric nor seismic forces that directly hit the territory of Haiti have significantly affected the country's population growth rates and spatial population densities. Conversely, since the 1950s more people were exposed to atmospheric hazards, in particular, in regions which historically experienced higher storm frequencies

    Can Self-Organizing Maps accurately predict photometric redshifts?

    Full text link
    We present an unsupervised machine learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization approach called Self--Organizing Mapping (SOM). A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's Main Galaxy Sample, Luminous Red Galaxy, and Quasar samples along with the PHAT0 data set from the PHoto-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root mean square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches such as Artificial Neural Networks and Gaussian Process Regression. SOM RMSE--results (using Δ\Deltaz=zphot_{phot}--zspec_{spec}) for the Main Galaxy Sample are 0.023, for the Luminous Red Galaxy sample 0.027, Quasars are 0.418, and PHAT0 synthetic data are 0.022. The results demonstrate that there are non--unique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods.Comment: 5 pages, 3 figures, submitted to PAS

    A Systematic Analysis of Supernova Light in Gamma-Ray Burst Afterglows

    Get PDF
    We systematically reanalyzed all Gamma-Ray Burst (GRB) afterglow data published through the end of 2002, in an attempt to detect the predicted supernova light component and to gain statistical insight on its phenomenological properties. We fit the observed photometric light curves as the sum of an afterglow, an underlying host galaxy, and a supernova component. The latter is modeled using published multi-color light curves of SN 1998bw as a template. The total sample of afterglows with established redshifts contains 21 bursts (GRB 970228 - GRB 021211). For nine of these GRBs a weak supernova excess (scaled to SN 1998bw) was found, what makes this to one of the first samples of high-z core collapse supernovae. Among this sample are all bursts with redshifts less than ~0.7. These results strongly support the notion that in fact all afterglows of long-duration GRBs contain light from an associated supernova. A statistics of the physical parameters of these GRB-supernovae shows that SN 1998bw was at the bright end of its class, while it was not special with respect to its light curve shape. Finally, we have searched for a potential correlation of the supernova luminosities with the properties of the corresponding bursts and optical afterglows, but we have not found such a relation.Comment: 25 pages, 7 figures, accepted by ApJ; revised, shortened and updated compared to version 1; Title slightly changed; all figures showing individual afterglow light curves removed, as advised by the referee; conclusions unchange

    On Dust Extinction of Gamma-ray Burst Host Galaxies

    Get PDF
    Although it is well recognized that gamma-ray burst (GRB) afterglows are obscured and reddened by dust in their host galaxies, the wavelength-dependence and quantity of dust extinction are still poorly known. Current studies on this mostly rely on fitting the afterglow spectral energy distributions (SEDs) with template extinction models. The inferred extinction (both quantity and wavelength-dependence) and dust-to-gas ratios are often in disagreement with that obtained from dust depletion and X-ray spectroscopy studies. We argue that this discrepancy could result from the prior assumption of a template extinction law. We propose an analytical formula to approximate the GRB host extinction law. With the template extinction laws self-contained, and the capability of revealing extinction laws differing from the conventional ones, it is shown that this is a powerful approach in modeling the afterglow SEDs to derive GRB host extinction.Comment: 9 pages, 4 figures; The Astrophysical Journal, in press (2008 Oct 1 issue

    Mid-infrared observations of the SGR 1900+14 error box

    Full text link
    We report on mid-infrared observations of the compact stellar cluster located in the proximity of SGR 1900+14, and the radio/X-ray position of this soft-gamma repeater. Observations were performed in May and June of 2001 when the bursting source was in an active state. At the known radio and X-ray position of the SGR we did not detect transient mid-IR activity, although the observations were performed only hours before and after an outburst in the high-energy band.Comment: 4 pages, 3 figures, to appear in "Gamma-Ray Burst and Afterglow Astronomy 2001", Woods Hole; 5-9 Nov, 200

    World-sheet scattering in AdS_5 x S^5 at two loops

    Full text link
    We study the AdS_5 x S^5 sigma-model truncated to the near-flat-space limit to two-loops in perturbation theory. In addition to extending previously known one-loop results to the full SU(2|2)^2 S-matrix we calculate the two-loop correction to the dispersion relation and then compute the complete two-loop S-matrix. The result of the perturbative calculation can be compared with the appropriate limit of the conjectured S-matrix for the full theory and complete agreement is found.Comment: 26pages, 3 figure

    On the breakdown of perturbative integrability in large N matrix models

    Full text link
    We study the perturbative integrability of the planar sector of a massive SU(N) matrix quantum mechanical theory with global SO(6) invariance and Yang-Mills-like interaction. This model arises as a consistent truncation of maximally supersymmetric Yang-Mills theory on a three-sphere to the lowest modes of the scalar fields. In fact, our studies mimic the current investigations concerning the integrability properties of this gauge theory. Like in the field theory we can prove the planar integrability of the SO(6) model at first perturbative order. At higher orders we restrict ourselves to the widely studied SU(2) subsector spanned by two complexified scalar fields of the theory. We show that our toy model satisfies all commonly studied integrability requirements such as degeneracies in the spectrum, existence of conserved charges and factorized scattering up to third perturbative order. These are the same qualitative features as the ones found in super Yang-Mills theory, which were enough to conjecture the all-loop integrability of that theory. For the SO(6) model, however, we show that these properties are not sufficient to predict higher loop integrability. In fact, we explicitly demonstrate the breakdown of perturbative integrability at fourth order.Comment: 27 page
    corecore