45 research outputs found

    There are no attentional costs when selecting multiple movement goals

    No full text

    Feature based attention and visual stability

    No full text

    Eye movement preparation affects target selection for manual reaching

    No full text

    Target–Distractor Competition in the Oculomotor System Is Spatiotopic

    No full text
    In natural scenes, multiple visual stimuli compete for selection; however, each saccade displaces the stimulus representations in retinotopicaly organized visual and oculomotor maps. In the present study, we used saccade curvature to investigate whether oculomotor competition across eye movements is represented in retinotopic or spatiotopic coordinates. Participants performed a sequence of saccades and we induced oculomotor competition by briefly presenting a task-irrelevant distractor at different times during the saccade sequence. Despite the intervening saccade, the second saccade curved away from a spatial representation of the distractor that was presented before the first saccade. Furthermore, the degree of saccade curvature increased with the salience of the distractor presented before the first saccade. The results suggest that spatiotopic representations of target-distractor competition are crucial for successful interaction with objects of interest despite the intervening eye movements. © 2014 the authors

    Target-Distractor Competition in the Oculomotor System Is Spatiotopic

    No full text
    In natural scenes, multiple visual stimuli compete for selection; however, each saccade displaces the stimulus representations in retinotopicaly organized visual and oculomotor maps. In the present study, we used saccade curvature to investigate whether oculomotor competition across eye movements is represented in retinotopic or spatiotopic coordinates. Participants performed a sequence of saccades and we induced oculomotor competition by briefly presenting a task-irrelevant distractor at different times during the saccade sequence. Despite the intervening saccade, the second saccade curved away from a spatial representation of the distractor that was presented before the first saccade. Furthermore, the degree of saccade curvature increased with the salience of the distractor presented before the first saccade. The results suggest that spatiotopic representations of target-distractor competition are crucial for successful interaction with objects of interest despite the intervening eye movements. © 2014 the authors

    Dissociating oculomotor contributions to spatial and feature-based selection

    No full text
    Saccades not only deliver the high-resolution retinal image requisite for visual perception, but processing stages associated with saccade target selection affect visual perception even before the eye movement starts. These presaccadic effects are thought to arise from two visual selection mechanisms: spatial selection that enhances processing of the saccade target location and feature-based selection that enhances processing of the saccade target features. By measuring oculomotor performance and perceptual discrimination, we determined which selection mechanisms are associated with saccade preparation. We observed both feature-based and space-based selection during saccade preparation but found that feature-based selection was neither related to saccade initiation nor was it affected by simultaneously observed redistribution of spatial selection. We conclude that oculomotor selection biases visual selection only in a spatial, feature-unspecific manner. © 2013 the American Physiological Society
    corecore